PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1388–m1389.
Published online 2008 October 11. doi:  10.1107/S1600536808028195
PMCID: PMC2959720

trans-Diaqua­bis(2,2′-bipyridine-κ2 N,N′)ruthenium(II) bis­(trifluoro­methane­sulfonate)

Abstract

The title compound, trans-[Ru(bpy)2(H2O)2](CF3SO3)2 (bpy = 2,2′-bipyridine, C10H8N2), crystallized from the decomposition of an aged aqueous solution of a dimeric complex of cis-Ru(bpy)2 in 0.1 M triflic acid. The RuII ion is located on a crystallographic inversion center and exhibits a distorted octa­hedral coordination with equivalent ligands trans to each other. The Ru—O distance is 2.1053 (16) Å and the Ru—N distances are 2.0727 (17) and 2.0739 (17) Å. The bpy ligands are bent, due to inter-ligand steric inter­actions between H atoms of opposite pyridyl units across the Ru center. The crystal structure exhibits an extensive hydrogen-bonding network involving the water ligands and the trifluoromethane­sulfonate counter-ions within two-dimensional layers, although no close hydrogen-bond inter­actions exist between different layers.

Related literature

For the crystal structures of related compounds, see: Weathers et al. (1997 [triangle]); Durham et al. (1980 [triangle]); Klüfers & Zangl (2007 [triangle]). For a comparative discussion, see the Comment section in the Supplementary materials. For the preparation of the title compound, see: Jude et al. (2008 [triangle]); Sullivan et al. (1978 [triangle]). For related literature, see: Walsh & Durham (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1388-scheme1.jpg

Experimental

Crystal data

  • [Ru(C10H8N2)2(H2O)2](CF3SO3)2
  • M r = 747.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1388-efi1.jpg
  • a = 8.6569 (5) Å
  • b = 14.1272 (8) Å
  • c = 11.3226 (6) Å
  • β = 93.095 (3)°
  • V = 1382.71 (13) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 6.88 mm−1
  • T = 100 (2) K
  • 0.20 × 0.15 × 0.02 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: numerical followed by SADABS (Bruker, 2007 [triangle]) T min = 0.340, T max = 0.875
  • 15574 measured reflections
  • 2538 independent reflections
  • 2436 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.061
  • S = 1.09
  • 2538 reflections
  • 204 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028195/pk2108sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028195/pk2108Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

supplementary crystallographic information

Comment

The water ligands in cis- and trans-[Ru(bpy)2(H2O)2]2+ can undergo facile ligand substitution under mild reaction conditions and thus these complexes have been important synthetic precursors to derivatives of the general type [Ru(bpy)2(X)(Y)]n. Although the trans isomer is usually obtained from the photo-induced isomerization of the more common cis isomer (Durham et al., 1980; Walsh & Durham, 1982), formation of the trans isomer as a by-product in synthetic preparations involving the cis-Ru(bpy)2 moiety has also been reported (e.g. Weathers et al., 1997).

The title compound trans-[Ru(bpy)2(H2O)2](CF3SO3)2, (I), was unintentionally obtained and crystallized from an acidic (0.1 M CF3SO3H) aqueous solution of [(bpy)2Ru(OMe)(pyz)Ru(bpy)2](PF6)2 (Jude et al., 2008) that was left aging in ambient conditions for several weeks. Its crystal structure is shown in Figs. 1 and 2, and detailed structural information is available herein as supplementary materials as well as in the archived CIF.

The structure of the analogous compound as a hexafluorophosphate salt, i.e. trans-[Ru(bpy)2(H2O)2](PF6)2, (II), was previosuly reported (Weathers et al., 1997). In this case, the compound crystallized in the triclinic (P1) space group. The Ru—O distance of 2.116 (2) Å in the PF6- salt is similar to that reported here for the CF3SO3- analogue, and the mean Ru—N distance of 2.074 (2) Å in II is essentially identical to those observed for I. The dihedral angle between the pyridyl (C5N) ring planes in the distorted, non-planar bpy ligands is also similar in these compounds: 162.68 (12)° for II and 160.1 (1)° for I.

Another related structure was reported earlier for the oxidized/deprotonated Ru(III)-hydroxy species, trans-[Ru(bpy)2(H2O)(OH)](ClO4)2 (Durham et al., 1980). This perchlorate salt, (III), crystallized in the trigonal space group (P3121). In this case, however, the sterically strained bpy ligands adopted a twisted conformation, in contrast to the bowed conformation in both I and II. Shorter Ru—N distances are exhibited by the Ru(II)-diaqua species compared to III (2.090 (3) and 2.099 (3) Å), owing to the characteristic π-backbonding involving Ru(II) and π-acceptor pyridyl ligands. Consistent with the higher Ru(III) oxidation state, however, the Ru—O bond distance is shorter in III (2.007 (3) Å).

The trans-[Ru(bpy)2(H2O)2]2+ cations pack in alternating layers with the CF3SO3- anions packed between the cations. An extensive hydrogen bonding network exists within two-dimensional layers as a result of the hydrogen bonds between the water ligand molecules in the cationic complex and the sulfonate groups in the trifluoromethanesulfonate anions (Table 1 and Figure 2). However, no significant hydrogen-bond interactions are present between different layers.

Experimental

cis-Ru(bpy)2Cl2 was prepared as described by Sullivan et al. (1978). The title compound was a product of the decomposition of [(bpy)2Ru(OMe)(pyz)Ru(bpy)2](PF6)2 (Jude et al., 2008) in a highly acidic (0.1 M CF3SO3H) aqueous solution that was kept for several weeks in a sealed clear glass jar in ambient lighting and temperature conditions. Red–orange blocks suitable for single-crystal X-ray analysis were isolated from the mixture.

Refinement

Diffraction data for single crystals of I were collected for 2θ < 139.4° on a Bruker AXS SMART APEXII diffractometer. The structure was solved by direct methods and hydrogen atoms were included in the final refinement cycles at predicted positions, with the exception of H1A and H1B which were refined isotropically.

Figures

Fig. 1.
Single crystal structure of the title compound with 50% probability displacement ellipsoids. H atoms are omitted for clarity.
Fig. 2.
A packing diagram showing the hydrogen bonds (as dotted lines) between the water ligands in the ruthenium complex and the sulfonate group in the trifluoromethanesulfonate counterions.

Crystal data

[Ru(C10H8N2)2(H2O)2](CF3O3S)2F(000) = 748
Mr = 747.61Dx = 1.796 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1677 reflections
a = 8.6569 (5) Åθ = 5.0–67.3°
b = 14.1272 (8) ŵ = 6.88 mm1
c = 11.3226 (6) ÅT = 100 K
β = 93.095 (3)°Plate, brown
V = 1382.71 (13) Å30.20 × 0.15 × 0.02 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2538 independent reflections
Radiation source: fine-focus sealed tube2436 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 69.7°, θmin = 5.0°
Absorption correction: numerical Numerical followed by SADABS (Bruker, 2007)h = −9→10
Tmin = 0.340, Tmax = 0.875k = −17→17
15574 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0273P)2 + 1.4103P] where P = (Fo2 + 2Fc2)/3
2538 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.Hydrogen atoms were placed in calculated positions with the exception of H1A and H1A, which were located in a difference synthesis and subsequently allowed to refine with isotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.50000.50000.00000.01303 (9)
O10.64907 (19)0.61137 (12)0.05421 (17)0.0181 (3)
N20.6089 (2)0.42131 (12)0.13474 (15)0.0154 (4)
C30.5507 (3)0.39407 (15)0.23786 (19)0.0192 (4)
H30.44310.40200.24750.023*
C40.6412 (3)0.35501 (17)0.3302 (2)0.0243 (5)
H40.59650.33650.40140.029*
C50.7986 (3)0.34355 (18)0.3164 (2)0.0271 (5)
H50.86440.32080.38000.033*
C60.8584 (3)0.36563 (17)0.2090 (2)0.0230 (5)
H60.96500.35590.19700.028*
C70.7606 (3)0.40225 (15)0.11871 (19)0.0179 (4)
C80.8048 (2)0.41339 (15)−0.00489 (19)0.0170 (4)
C90.9491 (3)0.38753 (16)−0.0439 (2)0.0208 (5)
H91.03120.37080.01130.025*
C100.9709 (3)0.38668 (17)−0.1642 (2)0.0240 (5)
H101.06920.3716−0.19260.029*
C110.8470 (3)0.40816 (17)−0.2426 (2)0.0230 (5)
H110.85780.4043−0.32550.028*
C120.7075 (3)0.43527 (16)−0.19861 (19)0.0194 (4)
H120.62330.4499−0.25280.023*
N130.6869 (2)0.44164 (12)−0.08110 (16)0.0160 (4)
S10.31188 (6)0.31728 (4)0.61491 (5)0.01857 (13)
C140.2290 (3)0.3937 (2)0.4986 (2)0.0343 (6)
F150.1904 (2)0.34309 (16)0.40134 (15)0.0556 (5)
F160.3298 (2)0.45966 (12)0.46821 (15)0.0458 (4)
F170.1035 (2)0.43667 (17)0.53333 (18)0.0652 (6)
O190.44116 (19)0.27407 (11)0.55926 (14)0.0241 (4)
O200.3551 (2)0.38361 (12)0.70808 (14)0.0271 (4)
O210.1893 (2)0.25354 (14)0.64049 (17)0.0360 (5)
H1A0.644 (3)0.6198 (19)0.120 (3)0.016 (7)*
H1B0.619 (4)0.651 (2)0.018 (3)0.033 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.01032 (13)0.01596 (13)0.01305 (13)0.00058 (8)0.00289 (8)−0.00017 (7)
O10.0178 (8)0.0206 (8)0.0159 (9)−0.0017 (6)0.0017 (6)0.0007 (7)
N20.0146 (9)0.0163 (8)0.0155 (9)0.0011 (7)0.0015 (7)−0.0003 (7)
C30.0195 (11)0.0191 (10)0.0196 (11)0.0000 (8)0.0064 (9)−0.0007 (8)
C40.0310 (13)0.0241 (11)0.0185 (11)0.0024 (9)0.0070 (10)0.0042 (9)
C50.0291 (14)0.0300 (12)0.0219 (11)0.0101 (10)−0.0011 (10)0.0028 (9)
C60.0164 (11)0.0288 (12)0.0240 (11)0.0054 (9)0.0022 (9)0.0008 (9)
C70.0174 (11)0.0169 (10)0.0196 (11)0.0008 (8)0.0041 (9)−0.0011 (8)
C80.0149 (11)0.0164 (10)0.0198 (11)−0.0002 (8)0.0016 (9)−0.0010 (8)
C90.0163 (11)0.0228 (11)0.0232 (11)0.0020 (9)0.0018 (9)−0.0001 (9)
C100.0180 (12)0.0285 (12)0.0265 (12)0.0039 (9)0.0102 (10)0.0003 (9)
C110.0228 (12)0.0281 (12)0.0188 (11)0.0033 (9)0.0063 (9)−0.0001 (9)
C120.0192 (12)0.0227 (11)0.0167 (10)0.0016 (9)0.0027 (9)−0.0003 (8)
N130.0137 (9)0.0160 (8)0.0185 (9)−0.0004 (7)0.0037 (7)−0.0005 (7)
S10.0180 (3)0.0219 (3)0.0161 (2)−0.0016 (2)0.0032 (2)−0.00187 (19)
C140.0296 (15)0.0488 (17)0.0245 (13)0.0170 (12)−0.0003 (11)0.0023 (11)
F150.0536 (12)0.0841 (14)0.0270 (9)0.0107 (10)−0.0172 (8)−0.0078 (9)
F160.0665 (12)0.0385 (9)0.0332 (9)0.0124 (8)0.0110 (8)0.0147 (7)
F170.0458 (11)0.0919 (16)0.0583 (12)0.0474 (11)0.0068 (9)0.0086 (11)
O190.0218 (9)0.0244 (8)0.0266 (8)0.0029 (6)0.0054 (7)0.0001 (6)
O200.0347 (10)0.0275 (9)0.0191 (8)−0.0044 (7)0.0015 (7)−0.0040 (7)
O210.0340 (11)0.0391 (10)0.0366 (10)−0.0155 (8)0.0171 (8)−0.0102 (8)

Geometric parameters (Å, °)

Ru1—N2i2.0727 (17)C7—C81.479 (3)
Ru1—N22.0727 (17)C8—N131.360 (3)
Ru1—N13i2.0739 (17)C8—C91.396 (3)
Ru1—N132.0739 (17)C9—C101.385 (3)
Ru1—O1i2.1053 (16)C9—H90.9500
Ru1—O12.1053 (16)C10—C111.389 (4)
O1—H1A0.75 (3)C10—H100.9500
O1—H1B0.73 (4)C11—C121.384 (3)
N2—C31.352 (3)C11—H110.9500
N2—C71.363 (3)C12—N131.355 (3)
C3—C41.387 (3)C12—H120.9500
C3—H30.9500S1—O211.4334 (18)
C4—C51.389 (4)S1—O201.4451 (17)
C4—H40.9500S1—O191.4486 (16)
C5—C61.383 (3)S1—C141.820 (3)
C5—H50.9500C14—F171.323 (3)
C6—C71.391 (3)C14—F161.334 (3)
C6—H60.9500C14—F151.340 (3)
N2i—Ru1—N2180.00 (8)N2—C7—C6121.9 (2)
N2i—Ru1—N13i77.18 (7)N2—C7—C8113.93 (19)
N2—Ru1—N13i102.82 (7)C6—C7—C8123.8 (2)
N2i—Ru1—N13102.82 (7)N13—C8—C9122.0 (2)
N2—Ru1—N1377.18 (7)N13—C8—C7114.07 (18)
N13i—Ru1—N13180.0C9—C8—C7123.6 (2)
N2i—Ru1—O1i86.51 (7)C10—C9—C8119.0 (2)
N2—Ru1—O1i93.49 (7)C10—C9—H9120.5
N13i—Ru1—O1i86.88 (7)C8—C9—H9120.5
N13—Ru1—O1i93.12 (7)C9—C10—C11119.0 (2)
N2i—Ru1—O193.49 (7)C9—C10—H10120.5
N2—Ru1—O186.51 (7)C11—C10—H10120.5
N13i—Ru1—O193.12 (7)C12—C11—C10119.3 (2)
N13—Ru1—O186.88 (7)C12—C11—H11120.4
O1i—Ru1—O1180.0C10—C11—H11120.4
Ru1—O1—H1A110 (2)N13—C12—C11122.4 (2)
Ru1—O1—H1B102 (3)N13—C12—H12118.8
H1A—O1—H1B113 (3)C11—C12—H12118.8
C3—N2—C7117.74 (19)C12—N13—C8117.98 (18)
C3—N2—Ru1127.77 (15)C12—N13—Ru1127.48 (15)
C7—N2—Ru1114.28 (14)C8—N13—Ru1114.35 (14)
N2—C3—C4122.9 (2)O21—S1—O20115.16 (10)
N2—C3—H3118.6O21—S1—O19114.90 (11)
C4—C3—H3118.6O20—S1—O19114.53 (10)
C3—C4—C5118.6 (2)O21—S1—C14104.58 (13)
C3—C4—H4120.7O20—S1—C14102.69 (12)
C5—C4—H4120.7O19—S1—C14102.65 (11)
C6—C5—C4119.2 (2)F17—C14—F16108.4 (2)
C6—C5—H5120.4F17—C14—F15108.5 (2)
C4—C5—H5120.4F16—C14—F15107.4 (2)
C5—C6—C7119.2 (2)F17—C14—S1110.79 (19)
C5—C6—H6120.4F16—C14—S1111.30 (19)
C7—C6—H6120.4F15—C14—S1110.4 (2)
N13i—Ru1—N2—C316.01 (19)C9—C10—C11—C123.8 (4)
N13—Ru1—N2—C3−163.99 (19)C10—C11—C12—N13−0.1 (4)
O1i—Ru1—N2—C3−71.58 (18)C11—C12—N13—C8−5.0 (3)
O1—Ru1—N2—C3108.42 (18)C11—C12—N13—Ru1169.81 (17)
N13i—Ru1—N2—C7−158.51 (14)C9—C8—N13—C126.5 (3)
N13—Ru1—N2—C721.49 (14)C7—C8—N13—C12−166.89 (19)
O1i—Ru1—N2—C7113.90 (15)C9—C8—N13—Ru1−169.01 (16)
O1—Ru1—N2—C7−66.10 (15)C7—C8—N13—Ru117.6 (2)
C7—N2—C3—C45.3 (3)N2i—Ru1—N13—C12−16.10 (19)
Ru1—N2—C3—C4−169.07 (17)N2—Ru1—N13—C12163.90 (19)
N2—C3—C4—C50.2 (4)O1i—Ru1—N13—C1271.02 (18)
C3—C4—C5—C6−4.1 (4)O1—Ru1—N13—C12−108.98 (18)
C4—C5—C6—C72.5 (4)N2i—Ru1—N13—C8158.85 (14)
C3—N2—C7—C6−7.0 (3)N2—Ru1—N13—C8−21.15 (14)
Ru1—N2—C7—C6168.14 (17)O1i—Ru1—N13—C8−114.03 (15)
C3—N2—C7—C8166.29 (18)O1—Ru1—N13—C865.97 (15)
Ru1—N2—C7—C8−18.6 (2)O21—S1—C14—F1757.2 (2)
C5—C6—C7—N23.2 (3)O20—S1—C14—F17−63.4 (2)
C5—C6—C7—C8−169.4 (2)O19—S1—C14—F17177.4 (2)
N2—C7—C8—N130.6 (3)O21—S1—C14—F16177.87 (17)
C6—C7—C8—N13173.7 (2)O20—S1—C14—F1657.3 (2)
N2—C7—C8—C9−172.6 (2)O19—S1—C14—F16−61.9 (2)
C6—C7—C8—C90.5 (3)O21—S1—C14—F15−63.0 (2)
N13—C8—C9—C10−2.8 (3)O20—S1—C14—F15176.41 (18)
C7—C8—C9—C10169.9 (2)O19—S1—C14—F1557.3 (2)
C8—C9—C10—C11−2.4 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O19ii0.73 (4)2.01 (4)2.727 (2)169 (4)
O1—H1A···O20iii0.75 (3)1.95 (3)2.695 (2)169 (3)

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2108).

References

  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Durham, B., Wilson, S. R., Hodgson, D. J. & Meyer, T. J. (1980). J. Am. Chem. Soc.102, 600–607.
  • Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695–7702. [PubMed]
  • Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem.17, 3334–3341.
  • Walsh, J. L. & Durham, B. (1982). Inorg. Chem.21, 329–332.
  • Weathers, N. R., Sadoski, R. C., Durham, B. & Cordes, A. W. (1997). Acta Cryst. C53, 1047–1049. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography