PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1404.
Published online 2008 October 15. doi:  10.1107/S1600536808032388
PMCID: PMC2959713

[N-(5-Bromo-2-oxidobenzyl­idene)-l-valin­ato-κ3 O,N,O′]diethyl­tin(IV)

Abstract

The Sn atom of the title compound, [Sn(C2H5)2(C12H12BrNO3)], is in a distorted SnNC2O2 trigonal–bipyramidal geometry and forms five- and six-membered chelate rings with the tridentate ligand. One C atom of one ethyl group is disordered with site occupancies of 0.61 (3):0.39 (3).

Related literature

For related structures, see: Beltran et al. (2003 [triangle]); Basu Baul et al. (2007 [triangle]); Dakternieks et al. (1998 [triangle]); Rivera et al. (2006 [triangle]); Tian et al. (2005 [triangle], 2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1404-scheme1.jpg

Experimental

Crystal data

  • [Sn(C2H5)2(C12H12BrNO3)]
  • M r = 474.95
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1404-efi1.jpg
  • a = 9.810 (2) Å
  • b = 10.377 (2) Å
  • c = 18.301 (4) Å
  • V = 1863.1 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.53 mm−1
  • T = 295 (2) K
  • 0.20 × 0.18 × 0.11 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.519, T max = 0.688
  • 15137 measured reflections
  • 3836 independent reflections
  • 3292 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.085
  • S = 1.04
  • 3836 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.85 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1634 Friedel pairs
  • Flack parameter: 0.017 (14)

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032388/tk2313sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032388/tk2313Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Post-doctor Innovation Project of Shandong Province (200702021) and the Key Laboratory of Colloid Interface Chemistry of Ministry of Education (200707).

supplementary crystallographic information

Comment

The structural chemistry of diorganotin complexes with Schiff bases derived from α-amino acids has received attention due to their biological activities and their nonlinear optical properties (Beltran et al., 2003; Basu Baul et al., 2007; Dakternieks et al., 1998; Rivera et al., 2006; Tian et al., 2005, 2006, 2007). The structures of several diorganotin complexes with the Schiff base ligand [N-(2-oxidohydroxyphenylmethylene)valine, such as [N-(2-oxidophenylmethylene)valinato]dibutyltin(IV), [N-(2-oxidophenylmethylene)valinato]diphenyltin(IV) (Beltran et al., 2003), [N-(4-diethylamino-2-oxidophenylmethylene)valinato]diphenyltin(IV) (Rivera et al., 2006), [N-(5-bromo-2-oxidophenylmethylene)valinato]diphenyltin(IV), (Tian et al., 2005) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry about the tin atom in (I) is that of a distorted trigonal bipyramid with two ethyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenoxide O3 atom (Fig. 1). The tin atom is 0.063 (2) Å out of the NC2 trigonal plane in the direction of the O3 atom. The bond length of Sn1—O1 (2.153 (3) Å) is longer than that of Sn1—O3 (2.106 (3) Å) and the O1—Sn1—O3 bond angle is 156.21 (13) °. The monodentate mode of coordination of the carboxylate is reflected in the disparate C5—O1 and C5—O2 bond lengths of 1.287 (6) and 1.221 (6) Å, respectively.

Experimental

The title compound was synthesized by the reaction of diethyltin dichloride (0.50 g, 2 mmol) with potassium N-(5-bromosalicylidene)valinate (0.68 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in methanol (50 ml). The reaction mixture was refluxed for 3 h and filtered. The yellow solid (I) was obtained by removal of solvent under reduced pressure and was recrystallized from methanol. Crystals for crystallography were obtained from the slow evaporation of a chloroform-hexane (1:1, v/v) solution of (I) held at room temperature (yield 71%, m.p. 479–480 K).

Refinement

The C2 atom of one ethyl group was disordered over two positions; the site occupancy was refined to 0.61 (3):0.39 (3). The absolute configuration of the compound (I) was assigned on the basis of the known configuration of the starting reagent, L-valine. H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 - 0.98 Å, and with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. For C2 atom of ethyl group, the minor disordered component has been omitted for clarity.

Crystal data

[Sn(C2H5)2(C12H12BrNO3)]F(000) = 936
Mr = 474.95Dx = 1.693 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4436 reflections
a = 9.810 (2) Åθ = 2.2–22.1°
b = 10.377 (2) ŵ = 3.53 mm1
c = 18.301 (4) ÅT = 295 K
V = 1863.1 (7) Å3Block, yellow
Z = 40.20 × 0.18 × 0.11 mm

Data collection

Bruker SMART APEX area-detector diffractometer3836 independent reflections
Radiation source: fine-focus sealed tube3292 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −12→12
Tmin = 0.519, Tmax = 0.688k = −12→13
15137 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.0368P)2 + 0.0992P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3836 reflectionsΔρmax = 0.34 e Å3
209 parametersΔρmin = −0.85 e Å3
0 restraintsAbsolute structure: Flack (1983), 1634 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.017 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sn10.98675 (3)0.99102 (3)0.941187 (17)0.05242 (11)
N10.7827 (4)1.0416 (3)0.9737 (2)0.0458 (9)
O11.0064 (4)1.1614 (3)1.00747 (18)0.0660 (8)
O20.9042 (4)1.3037 (3)1.0809 (2)0.0753 (11)
O30.8849 (3)0.8346 (3)0.89231 (19)0.0590 (8)
Br10.35058 (8)0.84038 (8)0.73311 (4)0.0989 (3)
C11.1209 (6)0.8765 (6)1.0041 (4)0.0768 (17)
H1A1.07330.84791.04760.092*
H1B1.14480.80050.97600.092*
C2'1.2499 (13)0.9437 (18)1.0268 (15)0.100 (8)0.61 (3)
H2D1.30560.88551.05450.149*0.61 (3)
H2E1.22761.01731.05630.149*0.61 (3)
H2F1.29870.97130.98410.149*0.61 (3)
C21.2570 (17)0.877 (3)0.973 (2)0.092 (10)0.39 (3)
H2A1.31580.82331.00150.138*0.39 (3)
H2B1.29170.96340.97220.138*0.39 (3)
H2C1.25320.84440.92360.138*0.39 (3)
C31.0458 (6)1.0852 (6)0.8430 (3)0.0711 (15)
H3A1.12941.13260.85200.085*
H3B1.06551.02030.80630.085*
C40.9436 (7)1.1744 (8)0.8136 (4)0.110 (2)
H4A0.97771.21320.76970.165*
H4B0.92481.24030.84900.165*
H4C0.86131.12800.80290.165*
C50.9034 (6)1.2082 (5)1.0420 (3)0.0578 (13)
C60.7695 (5)1.1334 (5)1.0345 (3)0.0540 (12)
H60.69741.19491.02200.065*
C70.7302 (6)1.0675 (5)1.1066 (3)0.0630 (13)
H70.72711.13471.14410.076*
C80.8363 (6)0.9696 (6)1.1306 (3)0.0813 (17)
H8A0.92441.00991.13220.122*
H8B0.83820.89921.09660.122*
H8C0.81350.93771.17830.122*
C90.5892 (6)1.0081 (7)1.1028 (4)0.0880 (18)
H9A0.56820.96781.14860.132*
H9B0.58690.94491.06460.132*
H9C0.52331.07421.09280.132*
C100.6751 (4)1.0202 (4)0.9345 (3)0.0522 (10)
H100.59781.06840.94540.063*
C110.6638 (5)0.9281 (4)0.8755 (2)0.0491 (11)
C120.7670 (5)0.8381 (5)0.8588 (2)0.0529 (11)
C130.7368 (6)0.7468 (5)0.8052 (3)0.0656 (14)
H130.80090.68400.79370.079*
C140.6135 (7)0.7484 (5)0.7690 (3)0.0684 (15)
H140.59530.68730.73320.082*
C150.5183 (6)0.8391 (5)0.7856 (2)0.0594 (12)
C160.5395 (5)0.9272 (5)0.8387 (3)0.0561 (12)
H160.47200.98650.85050.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.05146 (17)0.04937 (17)0.05644 (19)0.00307 (15)−0.00404 (14)0.00692 (14)
N10.050 (2)0.0361 (19)0.051 (2)0.0014 (15)−0.0056 (17)−0.0018 (16)
O10.063 (2)0.0596 (18)0.075 (2)−0.011 (2)−0.0039 (19)−0.0065 (17)
O20.093 (3)0.052 (2)0.082 (3)−0.0179 (19)−0.006 (2)−0.0097 (19)
O30.0571 (19)0.0482 (18)0.072 (2)0.0089 (15)−0.0039 (17)−0.0096 (17)
Br10.0958 (5)0.1095 (6)0.0913 (5)−0.0262 (4)−0.0366 (4)−0.0077 (4)
C10.071 (4)0.071 (4)0.088 (4)0.013 (3)−0.013 (3)0.021 (3)
C2'0.063 (7)0.096 (10)0.139 (18)−0.009 (6)−0.044 (8)0.042 (11)
C20.066 (10)0.091 (17)0.12 (2)0.017 (9)−0.017 (11)0.034 (15)
C30.072 (3)0.082 (4)0.059 (3)0.002 (3)0.002 (3)0.020 (3)
C40.087 (4)0.127 (6)0.116 (6)0.013 (4)0.000 (4)0.055 (5)
C50.078 (3)0.042 (3)0.053 (3)−0.010 (2)−0.010 (3)0.007 (2)
C60.061 (3)0.047 (3)0.053 (3)0.003 (2)−0.010 (2)−0.011 (2)
C70.073 (3)0.056 (3)0.060 (3)−0.006 (3)0.000 (3)−0.009 (3)
C80.112 (5)0.073 (4)0.059 (3)−0.009 (3)0.001 (3)0.015 (3)
C90.083 (4)0.093 (4)0.089 (4)−0.019 (4)0.026 (3)−0.010 (4)
C100.055 (2)0.044 (2)0.057 (3)0.001 (2)0.002 (2)−0.005 (2)
C110.059 (3)0.047 (3)0.041 (3)−0.005 (2)−0.001 (2)0.002 (2)
C120.064 (3)0.048 (3)0.047 (3)−0.006 (2)0.011 (2)0.001 (2)
C130.080 (4)0.059 (3)0.059 (3)−0.005 (3)0.010 (3)−0.013 (3)
C140.092 (4)0.061 (3)0.052 (3)−0.017 (3)0.008 (3)−0.015 (3)
C150.065 (3)0.066 (3)0.047 (3)−0.018 (3)−0.007 (2)−0.001 (2)
C160.061 (3)0.052 (3)0.055 (3)−0.003 (2)−0.007 (2)0.001 (2)

Geometric parameters (Å, °)

Sn1—O32.106 (3)C4—H4B0.9600
Sn1—C12.114 (5)C4—H4C0.9600
Sn1—C32.126 (5)C5—C61.532 (7)
Sn1—O12.153 (3)C6—C71.536 (8)
Sn1—N12.153 (4)C6—H60.9800
N1—C101.296 (6)C7—C91.515 (7)
N1—C61.470 (6)C7—C81.520 (8)
O1—C51.287 (6)C7—H70.9800
O2—C51.221 (6)C8—H8A0.9600
O3—C121.310 (5)C8—H8B0.9600
Br1—C151.905 (5)C8—H8C0.9600
C1—C21.454 (19)C9—H9A0.9600
C1—C2'1.504 (14)C9—H9B0.9600
C1—H1A0.9700C9—H9C0.9600
C1—H1B0.9700C10—C111.446 (6)
C2'—H2D0.9600C10—H100.9300
C2'—H2E0.9600C11—C161.393 (6)
C2'—H2F0.9600C11—C121.411 (6)
C2—H2A0.9600C12—C131.396 (7)
C2—H2B0.9600C13—C141.379 (8)
C2—H2C0.9600C13—H130.9300
C3—C41.467 (8)C14—C151.360 (7)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.350 (7)
C4—H4A0.9600C16—H160.9300
O3—Sn1—C195.3 (2)O2—C5—O1126.0 (5)
O3—Sn1—C397.16 (19)O2—C5—C6118.0 (5)
C1—Sn1—C3123.3 (2)O1—C5—C6116.0 (4)
O3—Sn1—O1156.21 (13)N1—C6—C5108.7 (4)
C1—Sn1—O195.7 (2)N1—C6—C7112.5 (4)
C3—Sn1—O194.3 (2)C5—C6—C7111.4 (4)
O3—Sn1—N182.21 (13)N1—C6—H6108.0
C1—Sn1—N1124.4 (2)C5—C6—H6108.0
C3—Sn1—N1112.03 (18)C7—C6—H6108.0
O1—Sn1—N174.16 (14)C9—C7—C8111.5 (5)
C10—N1—C6117.3 (4)C9—C7—C6111.8 (5)
C10—N1—Sn1124.2 (3)C8—C7—C6112.0 (5)
C6—N1—Sn1116.7 (3)C9—C7—H7107.1
C5—O1—Sn1121.1 (3)C8—C7—H7107.1
C12—O3—Sn1126.6 (3)C6—C7—H7107.1
C2—C1—C2'48.3 (10)C7—C8—H8A109.5
C2—C1—Sn1110.8 (8)C7—C8—H8B109.5
C2'—C1—Sn1114.4 (6)H8A—C8—H8B109.5
C2—C1—H1A140.2C7—C8—H8C109.5
C2'—C1—H1A108.7H8A—C8—H8C109.5
Sn1—C1—H1A108.7H8B—C8—H8C109.5
C2—C1—H1B64.6C7—C9—H9A109.5
C2'—C1—H1B108.7C7—C9—H9B109.5
Sn1—C1—H1B108.7H9A—C9—H9B109.5
H1A—C1—H1B107.6C7—C9—H9C109.5
C1—C2'—H2D109.5H9A—C9—H9C109.5
C1—C2'—H2E109.5H9B—C9—H9C109.5
H2D—C2'—H2E109.5N1—C10—C11126.1 (4)
C1—C2'—H2F109.5N1—C10—H10116.9
H2D—C2'—H2F109.5C11—C10—H10116.9
H2E—C2'—H2F109.5C16—C11—C12121.2 (4)
C1—C2—H2A109.5C16—C11—C10115.6 (4)
C1—C2—H2B109.5C12—C11—C10123.0 (4)
H2A—C2—H2B109.5O3—C12—C13119.8 (5)
C1—C2—H2C109.5O3—C12—C11123.4 (4)
H2A—C2—H2C109.5C13—C12—C11116.7 (5)
H2B—C2—H2C109.5C14—C13—C12121.0 (5)
C4—C3—Sn1114.4 (4)C14—C13—H13119.5
C4—C3—H3A108.7C12—C13—H13119.5
Sn1—C3—H3A108.7C15—C14—C13120.2 (5)
C4—C3—H3B108.7C15—C14—H14119.9
Sn1—C3—H3B108.7C13—C14—H14119.9
H3A—C3—H3B107.6C16—C15—C14121.6 (5)
C3—C4—H4A109.5C16—C15—Br1119.4 (4)
C3—C4—H4B109.5C14—C15—Br1119.0 (4)
H4A—C4—H4B109.5C15—C16—C11119.2 (5)
C3—C4—H4C109.5C15—C16—H16120.4
H4A—C4—H4C109.5C11—C16—H16120.4
H4B—C4—H4C109.5
O3—Sn1—N1—C10−34.1 (4)Sn1—N1—C6—C520.5 (5)
C1—Sn1—N1—C10−125.3 (4)C10—N1—C6—C791.3 (5)
C3—Sn1—N1—C1060.5 (4)Sn1—N1—C6—C7−103.3 (4)
O1—Sn1—N1—C10148.7 (4)O2—C5—C6—N1167.5 (4)
O3—Sn1—N1—C6161.6 (3)O1—C5—C6—N1−14.2 (6)
C1—Sn1—N1—C670.5 (4)O2—C5—C6—C7−67.9 (6)
C3—Sn1—N1—C6−103.8 (3)O1—C5—C6—C7110.3 (5)
O1—Sn1—N1—C6−15.6 (3)N1—C6—C7—C9−65.2 (6)
O3—Sn1—O1—C50.6 (6)C5—C6—C7—C9172.5 (5)
C1—Sn1—O1—C5−116.7 (4)N1—C6—C7—C860.8 (6)
C3—Sn1—O1—C5119.2 (4)C5—C6—C7—C8−61.6 (6)
N1—Sn1—O1—C57.5 (3)C6—N1—C10—C11−176.0 (4)
C1—Sn1—O3—C12163.1 (4)Sn1—N1—C10—C1119.9 (6)
C3—Sn1—O3—C12−72.3 (4)N1—C10—C11—C16−176.7 (5)
O1—Sn1—O3—C1245.8 (6)N1—C10—C11—C127.8 (7)
N1—Sn1—O3—C1239.0 (4)Sn1—O3—C12—C13154.0 (4)
O3—Sn1—C1—C2104.8 (18)Sn1—O3—C12—C11−28.1 (6)
C3—Sn1—C1—C22.6 (19)C16—C11—C12—O3−179.4 (4)
O1—Sn1—C1—C2−96.3 (18)C10—C11—C12—O3−4.1 (7)
N1—Sn1—C1—C2−171.0 (18)C16—C11—C12—C13−1.5 (7)
O3—Sn1—C1—C2'157.3 (13)C10—C11—C12—C13173.8 (4)
C3—Sn1—C1—C2'55.1 (14)O3—C12—C13—C14−179.9 (5)
O1—Sn1—C1—C2'−43.9 (14)C11—C12—C13—C142.1 (7)
N1—Sn1—C1—C2'−118.5 (13)C12—C13—C14—C15−0.5 (8)
O3—Sn1—C3—C487.1 (5)C13—C14—C15—C16−1.9 (8)
C1—Sn1—C3—C4−171.7 (5)C13—C14—C15—Br1178.8 (4)
O1—Sn1—C3—C4−72.0 (5)C14—C15—C16—C112.4 (8)
N1—Sn1—C3—C42.7 (6)Br1—C15—C16—C11−178.2 (4)
Sn1—O1—C5—O2179.8 (4)C12—C11—C16—C15−0.7 (7)
Sn1—O1—C5—C61.7 (5)C10—C11—C16—C15−176.3 (4)
C10—N1—C6—C5−144.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2313).

References

  • Basu Baul, T. S., Masharing, C., Ruisi, G., Jirasko, R., Holcapek, M., De Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  • Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J.9, 2291–2306. [PubMed]
  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Rivera, J. M., Reyes, H., Cortes, A., Santillan, R., Lacroix, P. G., Lepetit, C., Nakatani, K. & Farfan, N. (2006). Chem. Mater.18, 1174–1183.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem.19, 980–987.
  • Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem.20, 74–80.
  • Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem.25, 312–318.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography