PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2192.
Published online 2008 October 25. doi:  10.1107/S1600536808027633
PMCID: PMC2959709

1,1,3-Trimethyl-3-(4-nitro­phen­yl)indane

Abstract

In the title compound, C18H19NO2, the five-membered ring of the indane fragment adopts an envelope conformation, with the unsubstituted C atom, acting as the flap atom, deviating by 0.412 (3) Å from the plane through the remaining four atoms. The dihedral angle between the nitro­phenyl ring and the indane benzene ring is 72.5 (1)°. The distances from the two O atoms to the plane of the adjacent benzene ring are 0.113 (4) and 0.064 (4) Å.

Related literature

For related literature, see: Bateman & Gordon (1976 [triangle]); Bezdek & Hrabak et al. (1979 [triangle]); Kumar et al. (1983 [triangle]); Men et al. (2008 [triangle]); Hanaineh-Abdelnour et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2192-scheme1.jpg

Experimental

Crystal data

  • C18H19NO2
  • M r = 281.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2192-efi1.jpg
  • a = 11.305 (4) Å
  • b = 11.422 (2) Å
  • c = 11.963 (2) Å
  • β = 102.32 (4)°
  • V = 1509.1 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 (2) K
  • 0.48 × 0.42 × 0.40 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3836 measured reflections
  • 2808 independent reflections
  • 1569 reflections with I > 2σ(I)
  • R int = 0.005
  • 3 standard reflections every 200 reflections intensity decay: 0.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.148
  • S = 1.02
  • 2808 reflections
  • 197 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027633/kj2096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027633/kj2096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Undergraduates’ Innovative Experiment Project of China for financial support and thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

Maleimide and its substituted derivatives are well known monomers that have many applications in industry. It may be used to prepare heat resistant polymers or copolymers (Kumar et al., 1983; Bezdek & Hrabak et al., 1979). Excellent thermal properties of the maleimide polymers and copolymers have also attracted much attention (Hanaineh-Abdelnour et al., 1999). The title compound is an important intermediate for synthesis of maleimide and its substituted derivatives. (Bateman & Gordon, 1976). Phenylindane amines is prepared by a process comprising acid-catalyzed dimerization of α-methylstyrene and subsequent nitration and reduction of the 1,1,3-trimethyl-3-phenyl-2,3-dihydro-1H-indene (Bateman & Gordon, 1976).

In the molecule of the title compound (Fig.1), the bond lengths and angles of the phenylidane moiety are comparable with those observed in 1,1,3,-trimethyl-3-phenyl-2,3-dihydro-1H-indene (Men et al., 2008). Ring A (C1—C6) and B (C13—C18) are planar and have a dihedral angle of 72.5 (1)°. The B ring forms a dihedral angle of 27.1 (3)° with the plane defined by the indane Csp3 atoms C7, C9 and C10. The torsion angles O1—N1—C3—C2 and O2—N1—C3—C4 are -174.3 (2)° and -176.5 (2)°, respectively. The distances of the O atoms to the plane through the adjacent benzene ring are 0.113 (4) Å and 0.064 (4) Å, respectively. The five-membered ring of the indane fragment adopts an envelop conformation, with the unsubstituted C atom acting as the flag atom, deviating 0.412 (3) Å from the plane through the remaining four atoms.

Experimental

To a three-necked, 250 ml flask equipped with a mechanical stirrer, 23.6 g (0.1 mol) 1,1,3-trimethyl-3-phenylindane, dissolved in 75 ml chloroform, was added. The flask was placed in an ice bath at 273 K. A previously mixed acidic solution containing 39.6 ml H2SO4 and 13.2 ml HNO3 was added dropwise to the phenylidane solution over 4 h at 273 K. The chloroform phase was isolated and washed with an aqueous bicarbonate solution and then with distilled water until neutral. The chloroform was removed with a rotovaporator, thereby yielding a viscous yellow liquid, which was recrystallized from methanol, afforded a light yellow powder (22.0 g, yield 78%, m.p.452–455 K). Single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of ethyl acetate over a period of several days.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined with a riding model (U =0.06688–0.08804 Å2)

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C18H19NO2F(000) = 600
Mr = 281.34Dx = 1.238 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.305 (4) ÅCell parameters from 25 reflections
b = 11.422 (2) Åθ = 4.6–7.5°
c = 11.963 (2) ŵ = 0.08 mm1
β = 102.32 (4)°T = 294 K
V = 1509.1 (7) Å3Block, colourless
Z = 40.48 × 0.42 × 0.40 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.005
Radiation source: fine-focus sealed tubeθmax = 25.6°, θmin = 1.8°
graphiteh = −13→13
ω/2θ scansk = 0→13
3836 measured reflectionsl = −9→14
2808 independent reflections3 standard reflections every 200 reflections
1569 reflections with I > 2σ(I) intensity decay: 0.3%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.148w = 1/[σ2(Fo2) + (0.0825P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.20 e Å3
197 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3433 (2)−0.30042 (15)0.44243 (16)0.0958 (7)
O20.3595 (2)−0.17051 (16)0.31987 (16)0.0899 (7)
N10.34612 (19)−0.19883 (17)0.41338 (17)0.0587 (6)
C10.3077 (2)0.08995 (18)0.53719 (17)0.0510 (6)
H10.30210.16790.51420.067 (3)*
C20.3234 (2)0.00613 (19)0.45991 (18)0.0525 (6)
H20.32870.02630.38580.067 (3)*
C30.3312 (2)−0.10856 (17)0.49490 (17)0.0454 (5)
C40.3226 (2)−0.13981 (18)0.60329 (18)0.0523 (6)
H40.3265−0.21810.62510.067 (3)*
C50.3082 (2)−0.05412 (19)0.67899 (17)0.0521 (6)
H50.3038−0.07500.75310.067 (3)*
C60.29992 (18)0.06319 (18)0.64821 (16)0.0412 (5)
C70.2858 (2)0.15488 (17)0.73769 (16)0.0447 (5)
C80.3994 (2)0.1497 (2)0.83509 (18)0.0616 (7)
H8A0.47040.15860.80390.088 (3)*
H8B0.40220.07560.87350.088 (3)*
H8C0.39630.21170.88860.088 (3)*
C90.1683 (2)0.13740 (19)0.78272 (18)0.0544 (6)
H9A0.14400.05580.77580.068 (5)*
H9B0.18190.15940.86280.068 (5)*
C100.0684 (2)0.21467 (19)0.71127 (19)0.0546 (6)
C11−0.0054 (3)0.1487 (2)0.6080 (2)0.0786 (8)
H11A−0.05970.20220.56060.088 (3)*
H11B−0.05130.08770.63420.088 (3)*
H11C0.04830.11510.56460.088 (3)*
C12−0.0166 (3)0.2629 (3)0.7825 (3)0.0865 (9)
H12A0.02890.30710.84550.088 (3)*
H12B−0.05700.19920.81130.088 (3)*
H12C−0.07560.31270.73590.088 (3)*
C130.1449 (2)0.30897 (18)0.67178 (18)0.0479 (6)
C140.1073 (3)0.4174 (2)0.6255 (2)0.0638 (7)
H140.02670.43990.61500.067 (3)*
C150.1915 (3)0.4909 (2)0.5954 (2)0.0656 (7)
H150.16720.56370.56400.067 (3)*
C160.3109 (3)0.4589 (2)0.6106 (2)0.0629 (7)
H160.36630.51010.58960.067 (3)*
C170.3492 (2)0.3515 (2)0.65694 (19)0.0539 (6)
H170.43020.32980.66800.067 (3)*
C180.2645 (2)0.27631 (17)0.68677 (16)0.0437 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.170 (2)0.0401 (10)0.0774 (12)0.0122 (11)0.0259 (13)−0.0062 (9)
O20.152 (2)0.0637 (11)0.0666 (12)0.0012 (12)0.0525 (12)−0.0106 (9)
N10.0753 (15)0.0474 (12)0.0535 (12)0.0026 (10)0.0136 (10)−0.0071 (9)
C10.0736 (18)0.0365 (11)0.0463 (11)0.0024 (11)0.0204 (11)0.0039 (9)
C20.0739 (17)0.0448 (13)0.0426 (11)−0.0010 (11)0.0208 (11)0.0024 (10)
C30.0503 (15)0.0411 (11)0.0457 (11)0.0029 (10)0.0124 (10)−0.0051 (9)
C40.0687 (17)0.0375 (12)0.0505 (13)0.0069 (11)0.0124 (11)0.0045 (9)
C50.0695 (17)0.0468 (13)0.0414 (11)0.0073 (11)0.0152 (11)0.0075 (9)
C60.0439 (13)0.0387 (11)0.0424 (11)0.0003 (10)0.0126 (9)0.0014 (9)
C70.0515 (14)0.0420 (11)0.0419 (11)0.0028 (10)0.0131 (10)−0.0008 (9)
C80.0662 (17)0.0681 (16)0.0482 (12)0.0069 (13)0.0069 (11)−0.0068 (11)
C90.0644 (17)0.0517 (14)0.0530 (12)0.0029 (12)0.0258 (11)0.0020 (10)
C100.0490 (15)0.0538 (14)0.0648 (14)−0.0004 (11)0.0208 (12)0.0004 (11)
C110.0667 (19)0.0772 (19)0.0885 (19)−0.0178 (16)0.0091 (15)0.0037 (15)
C120.080 (2)0.081 (2)0.113 (2)0.0119 (17)0.0548 (19)0.0061 (17)
C130.0481 (15)0.0444 (12)0.0532 (12)0.0030 (11)0.0152 (10)−0.0057 (10)
C140.0608 (17)0.0524 (15)0.0776 (16)0.0115 (13)0.0135 (13)0.0005 (12)
C150.083 (2)0.0401 (13)0.0751 (16)0.0022 (14)0.0209 (15)0.0023 (11)
C160.082 (2)0.0423 (14)0.0683 (15)−0.0165 (13)0.0241 (14)−0.0082 (11)
C170.0547 (16)0.0492 (13)0.0595 (13)−0.0078 (12)0.0160 (11)−0.0112 (11)
C180.0497 (15)0.0397 (12)0.0439 (11)−0.0010 (10)0.0147 (10)−0.0082 (9)

Geometric parameters (Å, °)

O1—N11.214 (2)C9—H9A0.9700
O2—N11.205 (2)C9—H9B0.9700
N1—C31.454 (3)C10—C121.518 (3)
C1—C21.368 (3)C10—C131.518 (3)
C1—C61.384 (3)C10—C111.533 (3)
C1—H10.9300C11—H11A0.9600
C2—C31.372 (3)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.368 (3)C12—H12A0.9600
C4—C51.366 (3)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C61.387 (3)C13—C181.377 (3)
C5—H50.9300C13—C141.385 (3)
C6—C71.530 (3)C14—C151.374 (4)
C7—C181.513 (3)C14—H140.9300
C7—C81.540 (3)C15—C161.372 (3)
C7—C91.550 (3)C15—H150.9300
C8—H8A0.9600C16—C171.377 (3)
C8—H8B0.9600C16—H160.9300
C8—H8C0.9600C17—C181.389 (3)
C9—C101.540 (3)C17—H170.9300
O2—N1—O1122.6 (2)H9A—C9—H9B108.4
O2—N1—C3119.22 (19)C12—C10—C13112.8 (2)
O1—N1—C3118.2 (2)C12—C10—C11109.2 (2)
C2—C1—C6122.54 (19)C13—C10—C11110.26 (19)
C2—C1—H1118.7C12—C10—C9111.9 (2)
C6—C1—H1118.7C13—C10—C9100.42 (18)
C1—C2—C3118.08 (19)C11—C10—C9112.0 (2)
C1—C2—H2121.0C10—C11—H11A109.5
C3—C2—H2121.0C10—C11—H11B109.5
C4—C3—C2121.69 (19)H11A—C11—H11B109.5
C4—C3—N1119.52 (19)C10—C11—H11C109.5
C2—C3—N1118.78 (19)H11A—C11—H11C109.5
C5—C4—C3118.9 (2)H11B—C11—H11C109.5
C5—C4—H4120.5C10—C12—H12A109.5
C3—C4—H4120.5C10—C12—H12B109.5
C4—C5—C6121.78 (19)H12A—C12—H12B109.5
C4—C5—H5119.1C10—C12—H12C109.5
C6—C5—H5119.1H12A—C12—H12C109.5
C1—C6—C5116.97 (18)H12B—C12—H12C109.5
C1—C6—C7123.90 (18)C18—C13—C14120.2 (2)
C5—C6—C7119.12 (17)C18—C13—C10112.06 (18)
C18—C7—C6112.16 (15)C14—C13—C10127.8 (2)
C18—C7—C8112.04 (18)C15—C14—C13118.7 (3)
C6—C7—C8107.99 (17)C15—C14—H14120.6
C18—C7—C9100.55 (17)C13—C14—H14120.6
C6—C7—C9112.34 (17)C16—C15—C14121.3 (2)
C8—C7—C9111.73 (18)C16—C15—H15119.4
C7—C8—H8A109.5C14—C15—H15119.4
C7—C8—H8B109.5C15—C16—C17120.4 (2)
H8A—C8—H8B109.5C15—C16—H16119.8
C7—C8—H8C109.5C17—C16—H16119.8
H8A—C8—H8C109.5C16—C17—C18118.7 (2)
H8B—C8—H8C109.5C16—C17—H17120.7
C10—C9—C7108.33 (17)C18—C17—H17120.7
C10—C9—H9A110.0C13—C18—C17120.7 (2)
C7—C9—H9A110.0C13—C18—C7111.63 (19)
C10—C9—H9B110.0C17—C18—C7127.7 (2)
C7—C9—H9B110.0
C6—C1—C2—C30.2 (4)C7—C9—C10—C1191.7 (2)
C1—C2—C3—C40.5 (4)C12—C10—C13—C18134.8 (2)
C1—C2—C3—N1179.2 (2)C11—C10—C13—C18−102.8 (2)
O2—N1—C3—C4−176.5 (2)C9—C10—C13—C1815.5 (2)
O1—N1—C3—C44.4 (3)C12—C10—C13—C14−45.1 (3)
O2—N1—C3—C24.9 (3)C11—C10—C13—C1477.3 (3)
O1—N1—C3—C2−174.3 (2)C9—C10—C13—C14−164.4 (2)
C2—C3—C4—C5−1.2 (4)C18—C13—C14—C15−0.1 (3)
N1—C3—C4—C5−179.8 (2)C10—C13—C14—C15179.7 (2)
C3—C4—C5—C61.2 (3)C13—C14—C15—C16−0.2 (4)
C2—C1—C6—C5−0.3 (3)C14—C15—C16—C170.0 (4)
C2—C1—C6—C7178.3 (2)C15—C16—C17—C180.5 (3)
C4—C5—C6—C1−0.4 (3)C14—C13—C18—C170.6 (3)
C4—C5—C6—C7−179.1 (2)C10—C13—C18—C17−179.25 (18)
C1—C6—C7—C187.7 (3)C14—C13—C18—C7−179.66 (18)
C5—C6—C7—C18−173.75 (19)C10—C13—C18—C70.4 (2)
C1—C6—C7—C8−116.2 (2)C16—C17—C18—C13−0.8 (3)
C5—C6—C7—C862.3 (3)C16—C17—C18—C7179.52 (19)
C1—C6—C7—C9120.1 (2)C6—C7—C18—C13103.5 (2)
C5—C6—C7—C9−61.4 (3)C8—C7—C18—C13−134.8 (2)
C18—C7—C9—C1025.7 (2)C9—C7—C18—C13−16.0 (2)
C6—C7—C9—C10−93.8 (2)C6—C7—C18—C17−76.8 (3)
C8—C7—C9—C10144.68 (18)C8—C7—C18—C1744.8 (3)
C7—C9—C10—C12−145.3 (2)C9—C7—C18—C17163.6 (2)
C7—C9—C10—C13−25.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2096).

References

  • Bateman, J. & Gordon, D. A. (1976). US Patent 3 983 092.
  • Bezdek, M. & Hrabak, F. J. (1979). Polym. Sci. Polym. Chem. Ed 17, 2857.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.
  • Hanaineh-Abdelnour, L., Bayyuk, S. & Theodorie, R. (1999). Tetrahedron, 50, 11859–11870.
  • Kumar, D., Fohlen, G. M. & Parker, J. A. (1983). Macromol. Chem.16, 1250–1257.
  • Men, J., Yang, M.-J., Jiang, Y., Chen, H. & Gao, G.-W. (2008). Acta Cryst. E64, o847. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography