PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2060.
Published online 2008 October 4. doi:  10.1107/S1600536808031334
PMCID: PMC2959707

(m-Phenyl­enedimethyl­ene)diammonium dichloride

Abstract

The asymmetric unit of the title compound, C8H14N2 2+·2Cl, contains one and a half of the dications and three chloride anions. The half molecule is completed by crystallographic twofold symmetry with two C atoms lying on the rotation axis. The two ammonium groups in each cation adopt a trans conformation with respect ot the benzene ring. The ammonium groups and chloride anions are involved in the formation of a three-dimensional N—H(...)Cl hydrogen-bonding network, which stabilizes the crystal packing.

Related literature

For general background and applications, see: Pasini & Zunino (1987 [triangle]); Otsuka et al. (1990 [triangle]); Michalson & Smuszkovicz (1989 [triangle]); Reedijk (1996 [triangle]); Blaser (1992 [triangle]); Soai & Niwa (1992 [triangle]); Jacobsen (1993 [triangle]); Kolb et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2060-scheme1.jpg

Experimental

Crystal data

  • C8H14N2 2+·2Cl
  • M r = 209.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2060-efi1.jpg
  • a = 27.5859 (18) Å
  • b = 13.1594 (14) Å
  • c = 8.8324 (6) Å
  • β = 103.539 (1)°
  • V = 3117.2 (4) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.893, T max = 0.945
  • 14623 measured reflections
  • 3066 independent reflections
  • 2615 reflections with I > 2σ(I)
  • R int = 0.103

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.118
  • S = 1.06
  • 3066 reflections
  • 191 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031334/cv2456sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031334/cv2456Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Xiangfan University for financial support.

supplementary crystallographic information

Comment

The diamine compounds are important in biologically active natural products (Pasini & Zunino, 1987; Otsuka et al., 1990), in medicinal chemistry (Michalson & Smuszkovicz, 1989; Reedijk, 1996). They are also used as chiral auxiliaries and chiral ligands in asymmetric catalysis (Blaser, 1992; Soai & Niwa, 1992; Jacobsen, 1993; Kolb et al., 1994). Herewith we present the title diamine compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal. Two amino groups in the dications adopt trans-conformation and each amino group form three N—H···Cl hydrogen bonds (Table 1) to stabilize the crystal packing.

Experimental

1,3-Phenylenedimethanamine was dissolved in ethanol, then 1N HCl was dropped to the solution. Colourless, block-like crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of ethanol at 283 K.

Refinement

All H atoms were initially located in a difference Fourier map. C-bound H atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). Amino H atoms were refined with bond restraint of N—H = 0.88 (3) Å and constrained displacement parameter Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

Crystal data

C8H14N22+·2ClF(000) = 1320
Mr = 209.11Dx = 1.337 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c/2ycCell parameters from 6157 reflections
a = 27.5859 (18) Åθ = 2.8–27.8°
b = 13.1594 (14) ŵ = 0.58 mm1
c = 8.8324 (6) ÅT = 298 K
β = 103.539 (1)°Block, colourless
V = 3117.2 (4) Å30.20 × 0.10 × 0.10 mm
Z = 12

Data collection

Bruker SMART CCD area-detector diffractometer3066 independent reflections
Radiation source: fine-focus sealed tube2615 reflections with I > 2σ(I)
graphiteRint = 0.103
[var phi] and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −33→33
Tmin = 0.894, Tmax = 0.945k = −14→16
14623 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0717P)2] where P = (Fo2 + 2Fc2)/3
3066 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.36 e Å3
9 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.27771 (7)0.50258 (14)−0.0022 (2)0.0355 (4)
C20.26673 (7)0.60114 (16)0.0327 (2)0.0414 (5)
H20.28560.65470.00890.050*
C30.22778 (7)0.62046 (16)0.1031 (2)0.0438 (5)
H30.22060.68700.12610.053*
C40.19964 (7)0.54155 (16)0.1392 (2)0.0398 (5)
H40.17350.55490.18650.048*
C50.21012 (6)0.44213 (14)0.1052 (2)0.0341 (4)
C60.24907 (7)0.42332 (14)0.0342 (2)0.0355 (4)
H60.25610.35690.01060.043*
C70.31958 (8)0.48207 (17)−0.0814 (2)0.0447 (5)
H7A0.31180.4215−0.14500.054*
H7B0.32200.5384−0.15000.054*
C80.18156 (7)0.35486 (16)0.1535 (3)0.0458 (5)
H8A0.19950.29220.14690.055*
H8B0.18020.36420.26130.055*
C90.00722 (7)0.23186 (15)0.6209 (2)0.0349 (4)
C100.00730 (8)0.12695 (16)0.6221 (3)0.0466 (5)
H100.01230.09150.53600.056*
C110.00000.0741 (2)0.75000.0553 (8)
H110.00000.00340.75000.066*
C120.00000.2839 (2)0.75000.0349 (6)
H120.00000.35460.75000.042*
C130.01564 (8)0.28914 (19)0.4806 (3)0.0483 (5)
H13A0.01000.24390.39150.058*
H13B−0.00810.34460.45610.058*
Cl10.08043 (2)0.50782 (4)0.76455 (6)0.04504 (18)
Cl20.35181 (2)0.28315 (4)0.23278 (6)0.04852 (19)
Cl30.094656 (19)0.15614 (4)0.24153 (6)0.04295 (18)
N10.36851 (6)0.46791 (14)0.0298 (2)0.0375 (4)
H1C0.3787 (8)0.5257 (13)0.078 (3)0.045*
H1A0.3894 (7)0.4518 (17)−0.025 (2)0.045*
H1B0.3683 (8)0.4230 (15)0.102 (2)0.045*
N20.13028 (7)0.34496 (14)0.0574 (2)0.0433 (4)
H2A0.1269 (9)0.3278 (17)−0.036 (2)0.052*
H2B0.1123 (8)0.3989 (15)0.050 (3)0.052*
H2C0.1129 (8)0.2921 (15)0.090 (3)0.052*
N30.06651 (7)0.32989 (15)0.5100 (2)0.0433 (4)
H3C0.0906 (7)0.2890 (16)0.557 (3)0.052*
H3A0.0729 (8)0.3619 (17)0.430 (2)0.052*
H3B0.0690 (8)0.3733 (16)0.587 (2)0.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0337 (10)0.0412 (11)0.0320 (10)0.0014 (8)0.0086 (8)0.0026 (8)
C20.0419 (11)0.0340 (11)0.0477 (11)−0.0020 (9)0.0093 (9)0.0080 (9)
C30.0437 (11)0.0300 (11)0.0564 (13)0.0065 (9)0.0093 (10)0.0010 (9)
C40.0348 (10)0.0394 (11)0.0465 (11)0.0074 (8)0.0121 (9)0.0002 (9)
C50.0312 (9)0.0350 (11)0.0351 (10)−0.0009 (8)0.0060 (8)0.0031 (8)
C60.0383 (10)0.0304 (10)0.0373 (10)0.0049 (8)0.0080 (8)−0.0016 (8)
C70.0441 (12)0.0572 (14)0.0357 (11)0.0029 (10)0.0155 (10)0.0038 (9)
C80.0410 (11)0.0424 (12)0.0537 (13)−0.0015 (9)0.0106 (10)0.0110 (10)
C90.0297 (9)0.0420 (12)0.0345 (10)−0.0004 (8)0.0103 (8)0.0021 (8)
C100.0534 (12)0.0404 (13)0.0487 (13)0.0014 (10)0.0174 (10)−0.0118 (10)
C110.070 (2)0.0306 (16)0.067 (2)0.0000.0181 (18)0.000
C120.0321 (13)0.0293 (14)0.0460 (16)0.0000.0148 (12)0.000
C130.0415 (11)0.0678 (16)0.0373 (11)−0.0028 (10)0.0126 (9)0.0077 (10)
Cl10.0547 (3)0.0370 (3)0.0492 (3)−0.0046 (2)0.0237 (3)−0.0082 (2)
Cl20.0507 (3)0.0449 (3)0.0514 (3)0.0066 (2)0.0148 (3)0.0119 (2)
Cl30.0483 (3)0.0368 (3)0.0480 (3)0.0090 (2)0.0199 (3)0.0070 (2)
N10.0371 (9)0.0345 (9)0.0450 (10)−0.0037 (7)0.0179 (8)−0.0048 (7)
N20.0414 (10)0.0364 (10)0.0530 (11)−0.0058 (8)0.0132 (9)0.0012 (8)
N30.0455 (10)0.0417 (11)0.0438 (11)−0.0037 (8)0.0130 (9)0.0101 (8)

Geometric parameters (Å, °)

C1—C21.383 (3)C9—C131.514 (3)
C1—C61.391 (3)C10—C111.381 (3)
C1—C71.508 (3)C10—H100.9300
C2—C31.385 (3)C11—C10i1.381 (3)
C2—H20.9300C11—H110.9300
C3—C41.378 (3)C12—C9i1.384 (2)
C3—H30.9300C12—H120.9300
C4—C51.388 (3)C13—N31.468 (3)
C4—H40.9300C13—H13A0.9700
C5—C61.387 (2)C13—H13B0.9700
C5—C81.510 (3)N1—H1C0.884 (15)
C6—H60.9300N1—H1A0.858 (16)
C7—N11.483 (3)N1—H1B0.869 (15)
C7—H7A0.9700N2—H2A0.842 (16)
C7—H7B0.9700N2—H2B0.860 (16)
C8—N21.475 (3)N2—H2C0.927 (16)
C8—H8A0.9700N3—H3C0.880 (17)
C8—H8B0.9700N3—H3A0.877 (16)
C9—C101.381 (3)N3—H3B0.878 (16)
C9—C121.384 (2)
C2—C1—C6119.05 (17)C9—C10—C11120.7 (2)
C2—C1—C7120.19 (17)C9—C10—H10119.7
C6—C1—C7120.75 (17)C11—C10—H10119.7
C1—C2—C3120.39 (18)C10—C11—C10i119.5 (3)
C1—C2—H2119.8C10—C11—H11120.2
C3—C2—H2119.8C10i—C11—H11120.2
C4—C3—C2120.25 (19)C9—C12—C9i120.6 (3)
C4—C3—H3119.9C9—C12—H12119.7
C2—C3—H3119.9C9i—C12—H12119.7
C3—C4—C5120.21 (17)N3—C13—C9111.14 (18)
C3—C4—H4119.9N3—C13—H13A109.4
C5—C4—H4119.9C9—C13—H13A109.4
C6—C5—C4119.26 (17)N3—C13—H13B109.4
C6—C5—C8120.17 (17)C9—C13—H13B109.4
C4—C5—C8120.46 (17)H13A—C13—H13B108.0
C5—C6—C1120.85 (17)C7—N1—H1C110.3 (15)
C5—C6—H6119.6C7—N1—H1A106.6 (15)
C1—C6—H6119.6H1C—N1—H1A108 (2)
N1—C7—C1113.13 (16)C7—N1—H1B114.1 (14)
N1—C7—H7A109.0H1C—N1—H1B107 (2)
C1—C7—H7A109.0H1A—N1—H1B111 (2)
N1—C7—H7B109.0C8—N2—H2A117.4 (18)
C1—C7—H7B109.0C8—N2—H2B115.4 (16)
H7A—C7—H7B107.8H2A—N2—H2B103 (2)
N2—C8—C5113.48 (17)C8—N2—H2C112.6 (15)
N2—C8—H8A108.9H2A—N2—H2C99 (2)
C5—C8—H8A108.9H2B—N2—H2C108 (2)
N2—C8—H8B108.9C13—N3—H3C116.4 (16)
C5—C8—H8B108.9C13—N3—H3A113.4 (16)
H8A—C8—H8B107.7H3C—N3—H3A114 (2)
C10—C9—C12119.27 (18)C13—N3—H3B105.8 (15)
C10—C9—C13120.27 (18)H3C—N3—H3B97 (2)
C12—C9—C13120.5 (2)H3A—N3—H3B109 (2)
C6—C1—C2—C30.0 (3)C6—C1—C7—N1−92.2 (2)
C7—C1—C2—C3178.93 (19)C6—C5—C8—N2−109.5 (2)
C1—C2—C3—C40.1 (3)C4—C5—C8—N274.2 (2)
C2—C3—C4—C50.0 (3)C12—C9—C10—C110.4 (3)
C3—C4—C5—C6−0.2 (3)C13—C9—C10—C11179.56 (17)
C3—C4—C5—C8176.14 (19)C9—C10—C11—C10i−0.18 (13)
C4—C5—C6—C10.4 (3)C10—C9—C12—C9i−0.18 (13)
C8—C5—C6—C1−175.99 (18)C13—C9—C12—C9i−179.4 (2)
C2—C1—C6—C5−0.3 (3)C10—C9—C13—N3−103.1 (2)
C7—C1—C6—C5−179.17 (18)C12—C9—C13—N376.1 (2)
C2—C1—C7—N188.9 (2)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl10.88 (2)2.34 (2)3.206 (2)170 (2)
N2—H2C···Cl30.93 (2)2.36 (2)3.2453 (19)160 (2)
N1—H1B···Cl20.87 (2)2.28 (2)3.1186 (18)163 (2)
N3—H3C···Cl2ii0.88 (2)2.34 (2)3.171 (2)157 (2)
N2—H2B···Cl1iii0.86 (2)2.58 (2)3.189 (2)129 (2)
N1—H1C···Cl3iv0.88 (2)2.34 (2)3.2071 (18)166 (2)
N2—H2A···Cl2v0.84 (2)2.44 (2)3.201 (2)150 (2)
N1—H1A···Cl3v0.86 (2)2.51 (2)3.2527 (17)146 (2)

Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (iii) x, −y+1, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2456).

References

  • Blaser, H. U. (1992). Chem. Rev.92, 935–952.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jacobsen, E. N. (1993). Catalytic Asymmetric Synthesis, pp. 159–202. New York: VCH.
  • Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. (1994). Chem. Rev.94, 2483–2547.
  • Michalson, E. T. & Smuszkovicz, J. (1989). Prog. Drug. Res 33, 135–149. [PubMed]
  • Otsuka, M., Masuda, T., Haupt, A., Ohno, M., Shiraki, T., Sugiura, Y. & Maeda, K. (1990). J. Am. Chem. Soc.112, 838–845.
  • Pasini, A. & Zunino, F. (1987). Angew. Chem. Int. Ed. Engl.26, 615–624.
  • Reedijk, J. J. (1996). J. Chem. Soc. Chem. Commun. pp. 801–806.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soai, K. & Niwa, S. (1992). Chem. Rev.92, 833–856.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography