PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1376.
Published online 2008 October 9. doi:  10.1107/S1600536808031759
PMCID: PMC2959700

1-(4-Bromo­phen­yl)ferrocene

Abstract

In the title compound, [Fe(C5H5)(C11H8Br)], the distance of the Fe atom from the centroids of the unsubstituted and substituted cyclo­penta­dienyl (Cp) rings is 1.644 (1) and 1.643 (1) Å, respectively. The ferrocenyl moiety deviates from an eclipsed geometry, with marginally tilted Cp rings and an inter­planar angle between the Cp and benzene rings of 13.0 (4)°. The crystal structure is stabilized by C—H(...)π inter­actions between a cyclo­penta­dienyl H atom and the cyclo­penta­dienyl ring of a neighbouring mol­ecule.

Related literature

For related literature, see: Allen (2002 [triangle]); Anderson et al. (2003 [triangle]); Cambridge Crystallographic Data Centre (2002 [triangle]); Coe et al. (1994 [triangle]); Hor et al. (1991 [triangle]); Imrie et al. (2002 [triangle], 2003 [triangle]); Knoesen & Lotz (1999 [triangle]); Togni & Hayashi (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1376-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C11H8Br)]
  • M r = 341.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1376-efi5.jpg
  • a = 16.4991 (3) Å
  • b = 9.9578 (2) Å
  • c = 7.9269 (1) Å
  • β = 97.084 (1)°
  • V = 1292.41 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.24 mm−1
  • T = 173 (2) K
  • 0.37 × 0.32 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: integration (XPREP; Bruker, 2005 [triangle]) T min = 0.303, T max = 0.756
  • 15480 measured reflections
  • 3126 independent reflections
  • 2775 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.075
  • S = 1.15
  • 3126 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2005 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031759/lx2069sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031759/lx2069Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Manuel Fernandez for data collection, and the University of KwaZulu-Natal and the NRF for financial support.

supplementary crystallographic information

Comment

Ferrocene compounds especially those synthesized by reacting a para-substituted phenylferrocene 4-Fc—C6H4-R (R = any atom or group) are of great interest in the field of material chemistry (Togni & Hayashi, 1995). They are employed as precursors in the synthesis of ferrocenomesogens with the ferrocenyl moiety incorporated as a terminal group (Imrie et al., 2002, 2003). Interest in these compounds stems from their potential use either as metathesis catalysts or therapeutic radiopharmaceuticals (Hor et al., 1991; Knoesen & Lotz, 1999). The compounds have also been used to synthesize non-linear optical materials containing molybdenum or tungsten redox centres (Coe et al.,1994).

In the title compound (I, Fig. 1), the distance of the Fe atom from the centroids of the unsubstituted (C1—C5) and the substituted (C6—C10) cyclopentadienyl rings are 1.644 (1) and 1.643 (1) Å respectively, indicating that the para- substitution (bromophenyl group) has little influence on Fe—Cp bonding interactions. The two Cp rings deviate from an eclipsed conformation with torsion angles around 11.0 (2)°. The rings are also marginally tilted towards each other with a tilt angle between the planes of the two rings of 0.83 (2)°. The interplanar angle between the Cp and the phenyl rings of (I) was 13.0 (4)°. This value is very close to the 12.8° observed by Anderson et al. (2003) as the median value upon analysis of 17 structures from the April 2002 version of the Cambridge Structural Database using ConQuest Version 1.4 (Allen, 2002). The molecular packing (Fig. 2) is stabilized by C—H···π interactions between a cyclopentadienyl H atom and the cyclopentadienyl ring of an adjacent molecule, with a C2—H2···Cgi separation of 2.90 Å (Fig. 2 and Table 1; Cg is the centroid of the C1-C5 cyclopentadienyl ring, symmetry code as in Fig. 2).

Experimental

The title compound (I) was synthesized via the diazonium reaction as follows: A solution of 4-bromobenzene diazonium sulfate was prepared by the reaction of 4-bromoaniline (20.02 g, 0.12 mol) in dilute sulfuric acid (100 cm3) to which sodium nitrite (11.65 g, 0.17 mol) was slowly added in water at 278 K. The reaction temperature was continually monitored and held at 278 K during the addition. The resultant solution was filtered and the filtrate was immediately added to a cold, well stirred solution of ferrocene(24.60 g, 0.13 mol) in diethyl ether (450 cm3). Stirring was continued at 278 K for 3 h and then at room temperature for a further 12 h. The ether layer was separated, washed with water, dried over anhydrous sodium sulfate and evaporated. The residue was purified by column chromatography on silica gel. Hexane was used to elute unreacted ferrocene and the product was eluted from the column using 1 : 1 hexane : dichloromethane mixture to yield 4.57 g, 11% of pure (I). mp 122–123 °C; Spectroscopic analysis: IR νmax(KBr/cm-1) 3086, 3053, 2925, 2853, 1588, 1509, 1446, 1406, 1383, 1278, 1103, 1088, 1066,1050, 1030, 1001, 884, 819; 1H NMR (CDCl3, 300 MHz) δH 7.41 (2H, d, J 8.5, ArH), 7.34 (2H, d, J 8.5, ArH), 4.62 (2H, t, J 1.8, C5H4),4.34 (2H, t, J 1.8, C5H4), 4.04 (5H, s, C5H5);

EI–MS 70 eV m/z 343 (18), 342 (96), 341 (22), 340 (M+, 100), 260 (3), 205 (23), 203 (10), 202 (9); Elemental analysis (Found: C, 56.4; H, 3.8%; M, 339.9551. required for C16H13FeBr: C, 56.6; H, 3.9%; M, 339.9550).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.
Fig. 2.
A stereoview of the interactions in the crystal structure of (I). [Symmetry code: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.]

Crystal data

[Fe(C5H5)(C11H8Br)]F(000) = 680
Mr = 341.02Dx = 1.753 Mg m3
Monoclinic, P21/cMelting point = 395–396 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.4991 (3) ÅCell parameters from 8414 reflections
b = 9.9578 (2) Åθ = 2.4–28.4°
c = 7.9269 (1) ŵ = 4.24 mm1
β = 97.084 (1)°T = 173 K
V = 1292.41 (4) Å3Plate, orange
Z = 40.37 × 0.32 × 0.07 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3126 independent reflections
Radiation source: fine-focus sealed tube2775 reflections with I > 2σ(I)
graphiteRint = 0.039
Detector resolution: 10.0 pixels mm-1θmax = 28.0°, θmin = 1.2°
[var phi] and ω scansh = −21→21
Absorption correction: integration (XPREP; Bruker, 2005)k = −13→13
Tmin = 0.303, Tmax = 0.756l = −10→10
15480 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0124P)2 + 2.8125P] where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br−0.055964 (19)0.43903 (4)−0.29425 (5)0.04324 (11)
Fe0.35189 (2)0.48664 (4)0.27601 (5)0.01850 (9)
C10.27574 (19)0.6354 (3)0.3370 (4)0.0346 (7)
H10.22560.66120.27320.042*
C20.3538 (2)0.6885 (3)0.3185 (4)0.0307 (7)
H20.36530.75600.24010.037*
C30.41137 (19)0.6237 (3)0.4365 (4)0.0308 (6)
H30.46860.63970.45200.037*
C40.3689 (2)0.5298 (3)0.5287 (4)0.0334 (7)
H40.39250.47200.61670.040*
C50.2854 (2)0.5381 (3)0.4659 (4)0.0360 (7)
H50.24280.48650.50430.043*
C60.29438 (16)0.3883 (3)0.0676 (3)0.0208 (5)
C70.36479 (16)0.4587 (3)0.0264 (3)0.0225 (5)
H70.36520.5272−0.05680.027*
C80.43450 (17)0.4078 (3)0.1324 (4)0.0261 (6)
H80.48940.43630.13130.031*
C90.40733 (18)0.3072 (3)0.2393 (4)0.0258 (6)
H90.44080.25690.32260.031*
C100.32169 (18)0.2951 (3)0.2001 (4)0.0237 (6)
H100.28790.23500.25290.028*
C110.20996 (16)0.4044 (3)−0.0135 (3)0.0213 (5)
C120.18754 (19)0.5119 (3)−0.1218 (4)0.0309 (6)
H120.22690.5785−0.13920.037*
C130.1081 (2)0.5237 (3)−0.2055 (4)0.0340 (7)
H130.09330.5970−0.27970.041*
C140.05166 (17)0.4264 (3)−0.1775 (4)0.0295 (6)
C150.07133 (19)0.3200 (3)−0.0704 (4)0.0337 (7)
H150.03140.2545−0.05260.040*
C160.15020 (18)0.3097 (3)0.0114 (4)0.0285 (6)
H160.16400.23640.08620.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.02264 (15)0.0582 (2)0.0466 (2)0.00362 (14)−0.00493 (13)−0.00758 (17)
Fe0.02091 (18)0.01753 (18)0.01723 (19)−0.00139 (14)0.00303 (14)−0.00126 (14)
C10.0301 (15)0.0309 (16)0.0423 (19)0.0082 (13)0.0019 (13)−0.0127 (14)
C20.0456 (18)0.0172 (13)0.0304 (16)−0.0021 (12)0.0082 (14)−0.0022 (11)
C30.0297 (15)0.0293 (15)0.0330 (16)−0.0040 (12)0.0022 (12)−0.0130 (12)
C40.054 (2)0.0295 (15)0.0171 (14)0.0031 (14)0.0049 (13)−0.0048 (11)
C50.0425 (18)0.0341 (17)0.0358 (18)−0.0090 (14)0.0226 (14)−0.0120 (14)
C60.0250 (13)0.0199 (12)0.0178 (13)−0.0013 (10)0.0036 (10)−0.0017 (10)
C70.0237 (13)0.0271 (14)0.0174 (13)−0.0009 (11)0.0057 (10)−0.0008 (10)
C80.0214 (13)0.0325 (15)0.0243 (14)0.0014 (11)0.0026 (11)−0.0061 (11)
C90.0294 (14)0.0239 (13)0.0231 (14)0.0055 (11)−0.0015 (11)−0.0036 (11)
C100.0313 (14)0.0180 (12)0.0217 (14)−0.0025 (11)0.0023 (11)−0.0018 (10)
C110.0231 (13)0.0225 (13)0.0187 (13)−0.0003 (10)0.0037 (10)−0.0032 (10)
C120.0292 (15)0.0301 (15)0.0325 (16)−0.0060 (12)−0.0003 (12)0.0061 (12)
C130.0328 (16)0.0331 (16)0.0337 (17)0.0012 (13)−0.0051 (13)0.0047 (13)
C140.0180 (12)0.0402 (17)0.0296 (16)0.0027 (12)0.0007 (11)−0.0085 (13)
C150.0250 (14)0.0360 (16)0.0406 (18)−0.0068 (13)0.0061 (13)−0.0038 (14)
C160.0275 (14)0.0272 (14)0.0307 (16)−0.0028 (11)0.0038 (12)0.0026 (12)

Geometric parameters (Å, °)

Br—C141.902 (3)C6—C71.429 (4)
Fe—C32.033 (3)C6—C101.432 (4)
Fe—C42.034 (3)C6—C111.469 (4)
Fe—C52.035 (3)C7—C81.431 (4)
Fe—C72.035 (3)C7—H70.9500
Fe—C22.037 (3)C8—C91.420 (4)
Fe—C82.038 (3)C8—H80.9500
Fe—C12.039 (3)C9—C101.414 (4)
Fe—C102.043 (3)C9—H90.9500
Fe—C92.044 (3)C10—H100.9500
Fe—C62.050 (3)C11—C121.394 (4)
C1—C51.403 (5)C11—C161.396 (4)
C1—C21.417 (4)C12—C131.399 (4)
C1—H10.9500C12—H120.9500
C2—C31.405 (4)C13—C141.381 (4)
C2—H20.9500C13—H130.9500
C3—C41.424 (5)C14—C151.371 (5)
C3—H30.9500C15—C161.384 (4)
C4—C51.408 (5)C15—H150.9500
C4—H40.9500C16—H160.9500
C5—H50.9500
C3—Fe—C440.98 (13)Fe—C3—H3126.1
C3—Fe—C568.36 (13)C5—C4—C3107.6 (3)
C4—Fe—C540.50 (14)C5—C4—Fe69.79 (18)
C3—Fe—C7126.85 (12)C3—C4—Fe69.49 (17)
C4—Fe—C7165.51 (13)C5—C4—H4126.2
C5—Fe—C7152.17 (14)C3—C4—H4126.2
C3—Fe—C240.37 (13)Fe—C4—H4126.1
C4—Fe—C268.37 (13)C1—C5—C4108.4 (3)
C5—Fe—C268.20 (13)C1—C5—Fe69.99 (17)
C7—Fe—C2107.11 (12)C4—C5—Fe69.71 (17)
C3—Fe—C8107.68 (12)C1—C5—H5125.8
C4—Fe—C8127.68 (13)C4—C5—H5125.8
C5—Fe—C8165.74 (14)Fe—C5—H5126.1
C7—Fe—C841.13 (11)C7—C6—C10107.1 (2)
C2—Fe—C8118.32 (13)C7—C6—C11126.9 (2)
C3—Fe—C168.17 (13)C10—C6—C11126.0 (2)
C4—Fe—C168.10 (14)C7—C6—Fe68.97 (15)
C5—Fe—C140.30 (14)C10—C6—Fe69.28 (15)
C7—Fe—C1118.13 (13)C11—C6—Fe128.33 (19)
C2—Fe—C140.69 (13)C6—C7—C8108.0 (2)
C8—Fe—C1152.45 (14)C6—C7—Fe70.09 (15)
C3—Fe—C10153.13 (12)C8—C7—Fe69.56 (16)
C4—Fe—C10119.09 (12)C6—C7—H7126.0
C5—Fe—C10108.57 (12)C8—C7—H7126.0
C7—Fe—C1068.70 (11)Fe—C7—H7125.9
C2—Fe—C10165.43 (12)C9—C8—C7108.1 (2)
C8—Fe—C1068.36 (12)C9—C8—Fe69.89 (16)
C1—Fe—C10127.81 (13)C7—C8—Fe69.32 (15)
C3—Fe—C9119.06 (12)C9—C8—H8126.0
C4—Fe—C9108.37 (12)C7—C8—H8126.0
C5—Fe—C9128.08 (13)Fe—C8—H8126.4
C7—Fe—C968.88 (11)C10—C9—C8108.0 (2)
C2—Fe—C9152.56 (13)C10—C9—Fe69.72 (16)
C8—Fe—C940.70 (12)C8—C9—Fe69.41 (16)
C1—Fe—C9165.56 (13)C10—C9—H9126.0
C10—Fe—C940.48 (11)C8—C9—H9126.0
C3—Fe—C6164.67 (12)Fe—C9—H9126.5
C4—Fe—C6152.67 (12)C9—C10—C6108.7 (2)
C5—Fe—C6118.56 (12)C9—C10—Fe69.81 (16)
C7—Fe—C640.94 (10)C6—C10—Fe69.77 (15)
C2—Fe—C6126.92 (12)C9—C10—H10125.6
C8—Fe—C668.94 (11)C6—C10—H10125.6
C1—Fe—C6107.50 (12)Fe—C10—H10126.4
C10—Fe—C640.95 (11)C12—C11—C16117.9 (3)
C9—Fe—C668.80 (11)C12—C11—C6121.3 (2)
C5—C1—C2108.1 (3)C16—C11—C6120.8 (3)
C5—C1—Fe69.70 (18)C11—C12—C13121.2 (3)
C2—C1—Fe69.60 (17)C11—C12—H12119.4
C5—C1—H1126.0C13—C12—H12119.4
C2—C1—H1126.0C14—C13—C12118.4 (3)
Fe—C1—H1126.3C14—C13—H13120.8
C3—C2—C1107.9 (3)C12—C13—H13120.8
C3—C2—Fe69.66 (17)C15—C14—C13121.9 (3)
C1—C2—Fe69.71 (17)C15—C14—Br119.2 (2)
C3—C2—H2126.0C13—C14—Br118.9 (2)
C1—C2—H2126.0C14—C15—C16119.0 (3)
Fe—C2—H2126.2C14—C15—H15120.5
C2—C3—C4108.0 (3)C16—C15—H15120.5
C2—C3—Fe69.96 (17)C15—C16—C11121.5 (3)
C4—C3—Fe69.53 (17)C15—C16—H16119.2
C2—C3—H3126.0C11—C16—H16119.2
C4—C3—H3126.0
C3—Fe—C1—C5−81.8 (2)C9—Fe—C6—C1037.07 (17)
C4—Fe—C1—C5−37.5 (2)C3—Fe—C6—C11−79.1 (5)
C7—Fe—C1—C5156.93 (19)C4—Fe—C6—C1168.0 (4)
C2—Fe—C1—C5−119.4 (3)C5—Fe—C6—C1134.3 (3)
C8—Fe—C1—C5−168.4 (2)C7—Fe—C6—C11−121.0 (3)
C10—Fe—C1—C573.0 (2)C2—Fe—C6—C11−48.8 (3)
C9—Fe—C1—C541.0 (6)C8—Fe—C6—C11−159.0 (3)
C6—Fe—C1—C5113.8 (2)C1—Fe—C6—C11−8.0 (3)
C3—Fe—C1—C237.54 (19)C10—Fe—C6—C11120.1 (3)
C4—Fe—C1—C281.9 (2)C9—Fe—C6—C11157.2 (3)
C5—Fe—C1—C2119.4 (3)C10—C6—C7—C80.4 (3)
C7—Fe—C1—C2−83.7 (2)C11—C6—C7—C8−177.7 (2)
C8—Fe—C1—C2−49.0 (3)Fe—C6—C7—C859.43 (19)
C10—Fe—C1—C2−167.57 (17)C10—C6—C7—Fe−59.00 (18)
C9—Fe—C1—C2160.4 (4)C11—C6—C7—Fe122.8 (3)
C6—Fe—C1—C2−126.84 (18)C3—Fe—C7—C6−167.24 (17)
C5—C1—C2—C3−0.1 (3)C4—Fe—C7—C6163.3 (4)
Fe—C1—C2—C3−59.4 (2)C5—Fe—C7—C6−51.6 (3)
C5—C1—C2—Fe59.3 (2)C2—Fe—C7—C6−127.18 (17)
C4—Fe—C2—C338.05 (19)C8—Fe—C7—C6119.1 (2)
C5—Fe—C2—C381.8 (2)C1—Fe—C7—C6−84.50 (19)
C7—Fe—C2—C3−127.35 (18)C10—Fe—C7—C638.03 (16)
C8—Fe—C2—C3−84.2 (2)C9—Fe—C7—C681.59 (17)
C1—Fe—C2—C3119.2 (3)C3—Fe—C7—C873.7 (2)
C10—Fe—C2—C3161.7 (4)C4—Fe—C7—C844.2 (5)
C9—Fe—C2—C3−50.4 (3)C5—Fe—C7—C8−170.7 (2)
C6—Fe—C2—C3−168.12 (17)C2—Fe—C7—C8113.71 (18)
C3—Fe—C2—C1−119.2 (3)C1—Fe—C7—C8156.39 (18)
C4—Fe—C2—C1−81.1 (2)C10—Fe—C7—C8−81.08 (18)
C5—Fe—C2—C1−37.4 (2)C9—Fe—C7—C8−37.51 (17)
C7—Fe—C2—C1113.5 (2)C6—Fe—C7—C8−119.1 (2)
C8—Fe—C2—C1156.65 (19)C6—C7—C8—C9−0.4 (3)
C10—Fe—C2—C142.5 (5)Fe—C7—C8—C959.35 (19)
C9—Fe—C2—C1−169.5 (2)C6—C7—C8—Fe−59.76 (18)
C6—Fe—C2—C172.7 (2)C3—Fe—C8—C9114.28 (18)
C1—C2—C3—C40.0 (3)C4—Fe—C8—C973.3 (2)
Fe—C2—C3—C4−59.4 (2)C5—Fe—C8—C942.8 (6)
C1—C2—C3—Fe59.4 (2)C7—Fe—C8—C9−119.4 (2)
C4—Fe—C3—C2−119.1 (3)C2—Fe—C8—C9156.84 (17)
C5—Fe—C3—C2−81.4 (2)C1—Fe—C8—C9−169.2 (2)
C7—Fe—C3—C271.7 (2)C10—Fe—C8—C9−37.46 (16)
C8—Fe—C3—C2113.20 (19)C6—Fe—C8—C9−81.58 (18)
C1—Fe—C3—C2−37.82 (19)C3—Fe—C8—C7−126.30 (17)
C10—Fe—C3—C2−169.9 (2)C4—Fe—C8—C7−167.27 (17)
C9—Fe—C3—C2156.04 (18)C5—Fe—C8—C7162.2 (5)
C6—Fe—C3—C238.5 (5)C2—Fe—C8—C7−83.74 (19)
C5—Fe—C3—C437.7 (2)C1—Fe—C8—C7−49.8 (3)
C7—Fe—C3—C4−169.18 (18)C10—Fe—C8—C781.96 (17)
C2—Fe—C3—C4119.1 (3)C9—Fe—C8—C7119.4 (2)
C8—Fe—C3—C4−127.70 (19)C6—Fe—C8—C737.84 (16)
C1—Fe—C3—C481.3 (2)C7—C8—C9—C100.2 (3)
C10—Fe—C3—C4−50.8 (3)Fe—C8—C9—C1059.22 (19)
C9—Fe—C3—C4−84.9 (2)C7—C8—C9—Fe−59.00 (19)
C6—Fe—C3—C4157.6 (4)C3—Fe—C9—C10157.07 (17)
C2—C3—C4—C50.0 (3)C4—Fe—C9—C10113.59 (18)
Fe—C3—C4—C5−59.6 (2)C5—Fe—C9—C1072.8 (2)
C2—C3—C4—Fe59.6 (2)C7—Fe—C9—C10−81.54 (17)
C3—Fe—C4—C5118.8 (3)C2—Fe—C9—C10−168.1 (2)
C7—Fe—C4—C5155.7 (4)C8—Fe—C9—C10−119.4 (2)
C2—Fe—C4—C581.3 (2)C1—Fe—C9—C1040.2 (6)
C8—Fe—C4—C5−168.89 (19)C6—Fe—C9—C10−37.49 (16)
C1—Fe—C4—C537.35 (19)C3—Fe—C9—C8−83.5 (2)
C10—Fe—C4—C5−84.8 (2)C4—Fe—C9—C8−126.99 (18)
C9—Fe—C4—C5−127.73 (19)C5—Fe—C9—C8−167.72 (18)
C6—Fe—C4—C5−48.5 (3)C7—Fe—C9—C837.89 (16)
C5—Fe—C4—C3−118.8 (3)C2—Fe—C9—C8−48.7 (3)
C7—Fe—C4—C336.9 (6)C1—Fe—C9—C8159.7 (5)
C2—Fe—C4—C3−37.50 (18)C10—Fe—C9—C8119.4 (2)
C8—Fe—C4—C372.3 (2)C6—Fe—C9—C881.94 (17)
C1—Fe—C4—C3−81.5 (2)C8—C9—C10—C60.0 (3)
C10—Fe—C4—C3156.36 (18)Fe—C9—C10—C659.08 (19)
C9—Fe—C4—C3113.45 (19)C8—C9—C10—Fe−59.03 (19)
C6—Fe—C4—C3−167.3 (2)C7—C6—C10—C9−0.3 (3)
C2—C1—C5—C40.1 (3)C11—C6—C10—C9177.9 (2)
Fe—C1—C5—C459.3 (2)Fe—C6—C10—C9−59.10 (19)
C2—C1—C5—Fe−59.2 (2)C7—C6—C10—Fe58.80 (18)
C3—C4—C5—C1−0.1 (3)C11—C6—C10—Fe−123.0 (3)
Fe—C4—C5—C1−59.5 (2)C3—Fe—C10—C9−48.9 (3)
C3—C4—C5—Fe59.4 (2)C4—Fe—C10—C9−84.5 (2)
C3—Fe—C5—C181.3 (2)C5—Fe—C10—C9−127.49 (19)
C4—Fe—C5—C1119.5 (3)C7—Fe—C10—C982.01 (18)
C7—Fe—C5—C1−47.8 (3)C2—Fe—C10—C9157.9 (4)
C2—Fe—C5—C137.72 (19)C8—Fe—C10—C937.67 (17)
C8—Fe—C5—C1157.7 (5)C1—Fe—C10—C9−168.24 (18)
C10—Fe—C5—C1−127.14 (19)C6—Fe—C10—C9120.0 (2)
C9—Fe—C5—C1−168.01 (18)C3—Fe—C10—C6−168.9 (2)
C6—Fe—C5—C1−83.5 (2)C4—Fe—C10—C6155.50 (17)
C3—Fe—C5—C4−38.18 (19)C5—Fe—C10—C6112.47 (18)
C7—Fe—C5—C4−167.3 (2)C7—Fe—C10—C6−38.02 (16)
C2—Fe—C5—C4−81.8 (2)C2—Fe—C10—C637.8 (5)
C8—Fe—C5—C438.2 (6)C8—Fe—C10—C6−82.37 (17)
C1—Fe—C5—C4−119.5 (3)C1—Fe—C10—C671.7 (2)
C10—Fe—C5—C4113.35 (19)C9—Fe—C10—C6−120.0 (2)
C9—Fe—C5—C472.5 (2)C7—C6—C11—C12−12.5 (4)
C6—Fe—C5—C4156.95 (18)C10—C6—C11—C12169.7 (3)
C3—Fe—C6—C742.0 (5)Fe—C6—C11—C1278.7 (3)
C4—Fe—C6—C7−171.0 (2)C7—C6—C11—C16165.4 (3)
C5—Fe—C6—C7155.38 (18)C10—C6—C11—C16−12.4 (4)
C2—Fe—C6—C772.3 (2)Fe—C6—C11—C16−103.4 (3)
C8—Fe—C6—C7−38.01 (16)C16—C11—C12—C13−1.1 (5)
C1—Fe—C6—C7113.01 (18)C6—C11—C12—C13176.9 (3)
C10—Fe—C6—C7−118.9 (2)C11—C12—C13—C140.4 (5)
C9—Fe—C6—C7−81.79 (17)C12—C13—C14—C150.3 (5)
C3—Fe—C6—C10160.8 (4)C12—C13—C14—Br−178.6 (2)
C4—Fe—C6—C10−52.1 (3)C13—C14—C15—C16−0.3 (5)
C5—Fe—C6—C10−85.8 (2)Br—C14—C15—C16178.6 (2)
C7—Fe—C6—C10118.9 (2)C14—C15—C16—C11−0.4 (5)
C2—Fe—C6—C10−168.88 (17)C12—C11—C16—C151.0 (4)
C8—Fe—C6—C1080.85 (18)C6—C11—C16—C15−176.9 (3)
C1—Fe—C6—C10−128.13 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.952.903.780 (4)154

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2069).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13–m15. [PubMed]
  • Bruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cambridge Crystallographic Data Centre (2002). CONQUEST Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ.
  • Coe, B. J., Foulon, J.-D., Hamor, T. A., Jones, C. J., McCleverty, J. A., Bloor, D., Cross, G. H. & Axon, T. L. (1994). J. Chem. Soc. Dalton Trans. pp. 3427–3439.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hor, T. S. A., Chan, H. S. O., Tan, K.-L., Phang, L.-T., Yan, Y. K., Liu, L. K. & Wen, Y.-S. (1991). Polyhedron, pp. 2437–2441.
  • Imrie, C., Engelbrecht, P., Loubser, C., McCleland, C. W., Nyamori, V. O., Bogadi, R., Levendis, D. C., Tolom, N., Rooyen, J. & Williams, N. (2002). J. Organomet. Chem.645, 65–81.
  • Imrie, C., Loubser, C., Engelbrecht, P., McCleland, C. W. & Zheng, Y. (2003). J. Organomet. Chem.665, 48–64.
  • Knoesen, O. & Lotz, S. (1999). Technetium, Rhenium and other Metals in Chemistry and Nuclear Medicine, edited by M. Nicolini & C. I. Mazzi, pp. 153–156. Padova: S. G. Editoriali.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Togni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography