PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2078.
Published online 2008 October 4. doi:  10.1107/S1600536808031711
PMCID: PMC2959697

3-(2-Thioxo-1,3-dithiol-4-ylsulfan­yl)­propane­nitrile

Abstract

The title compound, C6H5NS4, consists of a planar 2-thioxo-1,3-dithiol-4-ylsulfanyl unit [maximum deviation from the ring plane = 0.0325 (2) Å], with a cyano­ethyl­sulfanyl substituent in the 4-position. In the crystal structure, weak inter­molecular C—H(...)S hydrogen bonds together with S(...)N inter­actions [3.260 (5) Å] form two-dimensional layers in the bc plane.

Related literature

For background to the chemistry of dithiole-2-thio­nes and tetra­thia­fulvenes, see: Chen et al. (2005 [triangle]); Fabre (2004 [triangle]); Segura & Martin (2001 [triangle]). For the preparation of the title compound, see: Liu et al. (2002 [triangle]). For a related structure, see: Jia et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2078-scheme1.jpg

Experimental

Crystal data

  • C6H5NS4
  • M r = 219.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2078-efi1.jpg
  • a = 5.2961 (9) Å
  • b = 10.8917 (19) Å
  • c = 16.031 (3) Å
  • β = 97.302 (2)°
  • V = 917.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 295 (2) K
  • 0.35 × 0.27 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.728, T max = 0.808
  • 6626 measured reflections
  • 1710 independent reflections
  • 1525 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.072
  • S = 1.07
  • 1710 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031711/sj2541sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031711/sj2541Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant No. 20872058).

supplementary crystallographic information

Comment

Tetrathiafulvalenes (TTFs) and their charge-transfer salts have become an interesting topic of research, due to their high electrical conductivity and superconducting properties (Segura & Martin, 2001). 1,3-Dithiole-2-thiones, important precursors to TTF derivatives, have also attracted attention (Chen,et al.; 2005; Fabre, 2004). In 2001, 4-alkylthio-1,3- dithiole-2-thione, a key kind of 1,3-dithiole-2-thiones was developed by a facile approach (Jia, et al., 2001). We report here the structure of the title compound (Fig. 1), which was prepared by the reaction of di(tetraethylammonium) bis(1,3-dithiol-2- thione-4,5-dithiolate)zincate and 3-bromopropionitrile in the presence of pyridine hydrochloride.

The atoms of the five-membered dithiole ring and the doubly-bonded atom S3 are nearly coplanar, with a maximum deviation from the least-squares plane of only 0.0325 (2) Å (S1). However, S4 deviates considerably from the plane, 0.0775 (4) Å, which is very similar to the structure of 4,5-bis(2-cyanoethylthio)-1,3-dithiol-2-one (Liu,et al., 2002). The cyanoethylsulfanyl group is substituted on the C2 atom of the dithiole ring. The C4—S4 bond length (1.8191 (19) Å) is typical of a single bond, while the other C—S bond lengths range from 1.650 (2) Å to 1.7435 (19) Å, suggesting a degree of conjugation in the dithiol-2-thione system. In the crystal structure weak intermolecular C5—H5B···S3 hydrogen bonds, Table 1, together with S···N (3.260 (5) Å) interactions form two dimensional layers in the bc plane (Fig. 2).

Experimental

The title compound was prepared according to the literature (Jia, et al., 2001). Orange block-like single crystals were obtained from slow evaporation of a dichloromethane solution at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic and 0.97Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Figures

Fig. 1.
The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.
Fig. 2.
Crystal packing of the title compound viewed down the a axis.

Crystal data

C6H5NS4F(000) = 448
Mr = 219.35Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3529 reflections
a = 5.2961 (9) Åθ = 2.6–27.9°
b = 10.8917 (19) ŵ = 0.97 mm1
c = 16.031 (3) ÅT = 295 K
β = 97.302 (2)°Block, yellow
V = 917.2 (3) Å30.35 × 0.27 × 0.23 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1710 independent reflections
Radiation source: fine-focus sealed tube1525 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.728, Tmax = 0.808k = −12→13
6626 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0339P)2 + 0.3313P] where P = (Fo2 + 2Fc2)/3
1710 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.21596 (10)1.03249 (5)0.12572 (3)0.05315 (17)
S20.34613 (11)0.99269 (5)0.30276 (3)0.05650 (17)
S3−0.06717 (11)1.17189 (6)0.24268 (4)0.05929 (17)
S40.60268 (9)0.85154 (5)0.07595 (3)0.05352 (16)
N1−0.1988 (4)0.62697 (19)−0.06631 (14)0.0688 (5)
C10.1519 (3)1.07055 (18)0.22542 (12)0.0433 (4)
C20.4470 (3)0.92099 (17)0.15433 (12)0.0422 (4)
C30.5061 (4)0.90441 (19)0.23696 (12)0.0493 (5)
H30.62870.84760.25830.059*
C40.3347 (4)0.79990 (19)0.00199 (12)0.0486 (5)
H4A0.20710.8642−0.00510.058*
H4B0.39210.7852−0.05220.058*
C50.2159 (4)0.6842 (2)0.03091 (14)0.0573 (5)
H5A0.33750.61740.03210.069*
H5B0.17480.69590.08760.069*
C6−0.0165 (4)0.65095 (19)−0.02465 (14)0.0531 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0531 (3)0.0661 (3)0.0389 (3)0.0149 (2)0.0007 (2)0.0015 (2)
S20.0672 (4)0.0630 (3)0.0382 (3)0.0049 (3)0.0027 (2)0.0019 (2)
S30.0548 (3)0.0623 (4)0.0621 (3)0.0057 (2)0.0123 (3)−0.0081 (3)
S40.0401 (3)0.0667 (3)0.0525 (3)0.0006 (2)0.0008 (2)−0.0142 (2)
N10.0643 (12)0.0674 (12)0.0708 (13)−0.0096 (10)−0.0057 (10)−0.0105 (10)
C10.0420 (10)0.0451 (10)0.0424 (10)−0.0085 (8)0.0044 (8)−0.0009 (8)
C20.0372 (9)0.0432 (10)0.0444 (10)−0.0041 (7)−0.0018 (7)−0.0035 (8)
C30.0510 (11)0.0464 (11)0.0487 (11)0.0034 (9)−0.0009 (9)0.0016 (9)
C40.0529 (11)0.0505 (11)0.0402 (10)0.0001 (9)−0.0022 (8)−0.0024 (8)
C50.0569 (12)0.0593 (13)0.0531 (12)−0.0052 (10)−0.0030 (10)0.0069 (10)
C60.0549 (12)0.0503 (12)0.0541 (12)−0.0041 (9)0.0070 (10)−0.0044 (9)

Geometric parameters (Å, °)

S1—C11.7262 (19)C2—C31.334 (3)
S1—C21.7435 (19)C3—H30.9300
S2—C31.727 (2)C4—C51.508 (3)
S2—C11.729 (2)C4—H4A0.9700
S3—C11.650 (2)C4—H4B0.9700
S4—C21.759 (2)C5—C61.470 (3)
S4—C41.8191 (19)C5—H5A0.9700
N1—C61.133 (3)C5—H5B0.9700
C1—S1—C297.91 (9)C5—C4—H4A109.1
C3—S2—C197.39 (9)S4—C4—H4A109.1
C2—S4—C4101.59 (9)C5—C4—H4B109.1
S3—C1—S1122.76 (12)S4—C4—H4B109.1
S3—C1—S2125.08 (12)H4A—C4—H4B107.9
S1—C1—S2112.15 (11)C6—C5—C4111.69 (18)
C3—C2—S1115.08 (15)C6—C5—H5A109.3
C3—C2—S4125.36 (15)C4—C5—H5A109.3
S1—C2—S4119.25 (11)C6—C5—H5B109.3
C2—C3—S2117.36 (16)C4—C5—H5B109.3
C2—C3—H3121.3H5A—C5—H5B107.9
S2—C3—H3121.3N1—C6—C5178.4 (2)
C5—C4—S4112.31 (14)
C2—S1—C1—S23.39 (12)C4—S4—C2—S1−52.73 (13)
C3—S2—C1—S3178.04 (13)S1—C2—C3—S20.7 (2)
C3—S2—C1—S1−3.08 (12)S4—C2—C3—S2174.29 (11)
C1—S1—C2—C3−2.54 (17)C1—S2—C3—C21.47 (18)
C1—S1—C2—S4−176.53 (11)C2—S4—C4—C5−78.01 (17)
C4—S4—C2—C3133.94 (18)S4—C4—C5—C6173.85 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5B···S3i0.972.863.813 (2)167

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2541).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, T., Liu, W.-J., Cong, Z.-Q. & Yin, B.-Z. (2005). Chin. J. Org. Chem., 25, 570–575.
  • Fabre, J. M. (2004). Chem. Rev., 104, 5133–5150. [PubMed]
  • Jia, C. Y., Zhang, D. Q., Xu, W. & Zhu, D. B. (2001). Org. Lett.3, 1941–1944. [PubMed]
  • Liu, G.-Q., Yu, W.-T., Xue, G., Liu, Z. & Fang, Q. (2002). Acta Cryst. E58, o514–o516.
  • Segura, J. L. & Martin, N. (2001). Angew. Chem. Int. Ed.40, 1372–1409. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography