PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1413–m1414.
Published online 2008 October 18. doi:  10.1107/S1600536808032686
PMCID: PMC2959695

Bis(ethyl 2-amino-4-thia­zoleacetato-κN)silver(I) nitrate

Abstract

In the title complex, [Ag(C7H10N2O2S)2]NO3, the AgI cation is bicoordinated in an almost linear configuration by two N-donor atoms of the thia­zole rings of two distinct ethyl 2-amino-4-thia­zoleacetate (EATA) ligands. The dihedral angle between the two thia­zole rings is 49.9°. A weak Ag(...)O (2.729 Å) inter­action between the Ag cation and one of the O atoms from the nitrate anion is observed, and a pseudo-dimer is formed through a weak Ag(...)S (3.490 Å) inter­action between the Ag cation and the S atom of the thia­zole ring of a symmetry-related mol­ecule. In the crystal structure, there are intra- and inter­molecular N—H(...)O hydrogen bonds. The occurrence of inter­molecular N—H(...)O hydrogen bonds results in the formation of two-dimensional sheets parallel to (010), which are further linked into a three-dimensional network through weak C—H(...)O inter­actions.

Related literature

For related literature on the synthesis, see: Zhang et al. (2008 [triangle]). For related crystal structures, see: Dong et al. (2005 [triangle]); Fun et al. (2008 [triangle]); Lee & Lee (2007 [triangle]); Liu et al. (2007 [triangle]); Zhang et al. (2008 [triangle]). For related literature, see: Bolos et al. (1999 [triangle]); Chang et al. (1982 [triangle]); Garrison & Youngs (2005 [triangle]); Nomiya et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1413-scheme1.jpg

Experimental

Crystal data

  • [Ag(C7H10N2O2S)2]NO3
  • M r = 542.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1413-efi1.jpg
  • a = 7.4900 (15) Å
  • b = 12.350 (3) Å
  • c = 13.015 (3) Å
  • α = 109.32 (3)°
  • β = 101.83 (3)°
  • γ = 105.58 (3)°
  • V = 1035.6 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.22 mm−1
  • T = 293 (2) K
  • 0.44 × 0.21 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.616, T max = 0.801
  • 11916 measured reflections
  • 3656 independent reflections
  • 3518 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.053
  • S = 1.10
  • 3656 reflections
  • 265 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and CAMERON (Pearce et al., 2000 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032686/dn2382sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032686/dn2382Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr S.-H. Zhang for helpful discussions. The authors also acknowledge financial support from the National Natural Science Foundation of China (grant No. 20701010), the Natural Science Foundation of Guangxi Province (grant No. 0728094) and Jiangxi Provincial Department of Education [grant No. (2007)348].

supplementary crystallographic information

Comment

As a further extension of previous works on the synthesis of metal–organic complex containing pharmaceutical intermediates as ligands, here ethyl 2-amino-4-thiazoleacetate (EATA) is again applied as the ligand to obtain coordination complex with potential higher pharmacological activity (Bolos et al., 1999; Chang et al., 1982). Silver cation is chosen as central ion because many silver complexes show excellent antimicrobial effect (Garrison et al., 2005; Nomiya et al., 2000). Moreover, EATA has many conventional coordination atoms such N, O, S and many hydrogen atoms attached to N atoms, which may be in favor of the formation of diverse structures. In a recently similar research, we used cadmium chloride hydrate and 2-amino-4-thiazole acetic acid (ATAA) as starting materials to form a mononuclear compound, dichloridobis(2-amino-5-methyl-1,3-thiazole-κN)cadmium(II), due to the decarboxylization of ATAA under ethanol–water mixed-solvothermal reaction condition (Zhang et al., 2008). To avoid potential instability of EATA under solvothermal condition, we carry out the reaction at low temperature as descried in experimental section and obtain an Ag-EATA complex as expected.

In the title complex, [Ag(C7H10N2O2S)2]NO3, the AgI cation is bicoordinated in an almost linear configuration by two N-donor atoms of thiazole rings of two distinct EATA ligand molecules (Fig. 1). Similar structures have been reported (Dong et al., 2005; Fun et al., 2008; Lee & Lee, 2007; Liu et al., 2007). The N—Ag—N angle and dihedral angle between the two thiazole rings are respectively 175.88 (6) and 49.9°, and the average Ag—N distance is 2.138 (2) Å. In addition, there is a weak Ag···O interaction between silver cation and one of oxygen atoms from a nitrate group (Ag···O = 2.729 Å), while a pseudo dimer is built up through weak Ag···S [3.490 Å (Lee & Lee, 2007)] interaction between silver cation and one sulfur atom on a thiazole ring of a symmetry related molecule (Fig. 2). Thus, the title compound might also be regarded as a four-coordinated Ag complex with a N2OS donor set. In the crystal structure, due to Ag···O, Ag···S weak interactions and intermolecular N—H···O hydrogen bonds between adjacent molecules containing nitrate anions (Table 1), the molecules are extended to form two-dimensional layers (Fig. 2) parallel to the (010) plane, which are further linked to a three dimensional network through weak C—H···O interactions (Table 1).

Experimental

To 10 ml ethanol solution containing ethyl 2-amino-4-thiazoleacetate (EATA) (0.186 g, 1 mmol), AgNO3 (0.170 g, 1 mmol) was added and the resulting mixture was stirred in the dark at room temperature for 4 h. After the filtrate had been allowed to stand overnight at a refrigerator temperature of 4 °C, the colourless block single crystals suitable for X-ray diffraction were obtained. Yield: 45.3% (based on Ag).

Refinement

All H atoms attached to C or N atoms were placed in geometrically (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C) and Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.
A view of complex (1), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H bond and weak Ag···O interactions are shown as dashed lines. Only H atoms involved in hydrogen bondings are ...
Fig. 2.
Partial packing view of (I), showing the formation of the pseudo dimer through weak Ag···S interactions and the two-dimensional network structure via intermolecular N—H···O hydrogen bonds. The weak ...

Crystal data

[Ag(C7H10N2O2S)2]NO3Z = 2
Mr = 542.36F(000) = 548
Triclinic, P1Dx = 1.739 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4900 (15) ÅCell parameters from 3656 reflections
b = 12.350 (3) Åθ = 1.8–25.1°
c = 13.015 (3) ŵ = 1.22 mm1
α = 109.32 (3)°T = 293 K
β = 101.83 (3)°Block, colourless
γ = 105.58 (3)°0.44 × 0.21 × 0.19 mm
V = 1035.6 (6) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3656 independent reflections
Radiation source: fine-focus sealed tube3518 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −8→8
Tmin = 0.616, Tmax = 0.801k = −14→14
11916 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.053w = 1/[σ2(Fo2) + (0.0247P)2 + 0.5391P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3656 reflectionsΔρmax = 0.38 e Å3
265 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0267 (10)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. FT–IR (KBr, cm-1):3409 vs, 3296 ms, 3206 ms, 3152 s, 2987 m, 2942 w, 2906 w, 2733 w, 2346 w, 1740 vs, 1706 vs, 1627 vs, 1565 m, 1541 vs, 1526 ms, 1477 m, 1448 m, 1402 ms, 1384 vs, 1321 s, 1249 ms, 1174 vs, 1131 ms, 1115 ms, 1029 ms, 995 w, 980 m, 948 w, 826 w, 752 w, 717 m, 658 w, 596 w, 547 w.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.85033 (2)−0.013259 (13)0.716062 (13)0.04021 (8)
S10.91350 (9)0.16283 (5)0.45565 (5)0.04745 (15)
S20.90581 (10)−0.23263 (6)0.94281 (5)0.05325 (16)
O60.5425 (3)−0.22530 (17)0.55153 (16)0.0687 (5)
O70.3231 (2)−0.39127 (14)0.54375 (13)0.0474 (4)
O51.2202 (3)0.48839 (16)0.81321 (16)0.0736 (6)
O41.2230 (3)0.45176 (13)0.96884 (13)0.0515 (4)
N30.6973 (3)−0.05628 (17)0.44144 (16)0.0516 (5)
H3B0.6555−0.10770.47020.062*
H3A0.6574−0.07820.36820.062*
N20.8931 (2)0.09958 (15)0.62234 (14)0.0345 (3)
N51.1602 (3)−0.06100 (19)0.90954 (18)0.0560 (5)
H5B1.1924−0.01010.87870.067*
H5A1.2491−0.06740.95830.067*
N40.8272 (2)−0.12730 (14)0.80909 (14)0.0344 (3)
C80.9742 (3)−0.12943 (18)0.88205 (17)0.0374 (4)
C90.6656 (4)−0.2735 (2)0.8643 (2)0.0510 (6)
H90.5601−0.33220.86630.061*
C100.6507 (3)−0.20965 (18)0.79984 (17)0.0390 (5)
C110.4644 (3)−0.2204 (2)0.7219 (2)0.0510 (6)
H11B0.4572−0.13920.74040.061*
H11A0.3544−0.27080.73460.061*
C120.4492 (3)−0.2767 (2)0.59729 (19)0.0445 (5)
C130.2915 (4)−0.4515 (2)0.42144 (19)0.0558 (6)
H13B0.4116−0.45920.40890.067*
H13A0.2505−0.40370.38200.067*
C70.8230 (3)0.05670 (19)0.50993 (17)0.0368 (4)
C61.0455 (4)0.2706 (2)0.59426 (19)0.0453 (5)
H61.12540.35110.61340.054*
C51.0172 (3)0.22243 (18)0.67040 (17)0.0360 (4)
C41.0999 (3)0.27987 (18)0.79796 (18)0.0428 (5)
H4B1.20090.24880.82000.051*
H4A0.99690.25150.82800.051*
C31.1861 (3)0.41749 (19)0.85648 (19)0.0420 (5)
C21.2986 (4)0.5826 (2)1.0409 (2)0.0542 (6)
H2B1.20730.62001.01870.065*
H2A1.42290.62281.03350.065*
C11.3247 (4)0.5950 (2)1.1613 (2)0.0621 (7)
H1C1.36630.68041.21170.093*
H1B1.42200.56271.18380.093*
H1A1.20270.55001.16610.093*
C140.1377 (5)−0.5744 (3)0.3773 (3)0.0772 (9)
H14C0.0217−0.56590.39370.116*
H14B0.1828−0.62260.41380.116*
H14A0.1085−0.61490.29570.116*
O30.6428 (4)0.1229 (2)0.8055 (2)0.0928 (8)
O20.3485 (3)0.09345 (19)0.80013 (16)0.0650 (5)
O10.5549 (3)0.1152 (2)0.9498 (2)0.0903 (7)
N10.5176 (3)0.10894 (16)0.85172 (17)0.0447 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.04525 (12)0.03583 (10)0.03859 (11)0.00714 (7)0.00920 (7)0.02277 (7)
S10.0633 (4)0.0491 (3)0.0388 (3)0.0198 (3)0.0174 (3)0.0284 (2)
S20.0699 (4)0.0490 (3)0.0467 (3)0.0141 (3)0.0173 (3)0.0335 (3)
O60.0612 (11)0.0628 (11)0.0586 (11)−0.0110 (9)0.0136 (9)0.0270 (9)
O70.0490 (9)0.0414 (8)0.0380 (8)0.0015 (7)0.0134 (7)0.0123 (6)
O50.1150 (17)0.0405 (9)0.0550 (10)0.0061 (10)0.0262 (11)0.0260 (8)
O40.0712 (11)0.0317 (7)0.0418 (8)0.0070 (7)0.0152 (8)0.0144 (6)
N30.0577 (12)0.0486 (11)0.0350 (9)0.0045 (9)0.0063 (8)0.0182 (8)
N20.0366 (9)0.0355 (8)0.0344 (8)0.0114 (7)0.0120 (7)0.0189 (7)
N50.0381 (10)0.0671 (13)0.0624 (13)0.0072 (9)0.0044 (9)0.0426 (11)
N40.0361 (9)0.0317 (8)0.0326 (8)0.0062 (7)0.0098 (7)0.0157 (7)
C80.0441 (11)0.0355 (10)0.0329 (10)0.0092 (9)0.0120 (8)0.0187 (8)
C90.0569 (14)0.0420 (12)0.0480 (13)0.0014 (10)0.0224 (11)0.0210 (10)
C100.0403 (11)0.0323 (10)0.0351 (10)0.0033 (8)0.0144 (8)0.0093 (8)
C110.0375 (12)0.0499 (13)0.0487 (13)0.0064 (10)0.0122 (10)0.0086 (10)
C120.0336 (11)0.0438 (11)0.0466 (12)0.0054 (9)0.0075 (9)0.0176 (10)
C130.0608 (15)0.0563 (14)0.0383 (12)0.0090 (12)0.0167 (11)0.0147 (11)
C70.0384 (10)0.0431 (11)0.0361 (10)0.0169 (9)0.0134 (8)0.0222 (9)
C60.0579 (13)0.0384 (11)0.0436 (12)0.0133 (10)0.0185 (10)0.0236 (9)
C50.0397 (11)0.0347 (10)0.0397 (11)0.0137 (8)0.0150 (9)0.0209 (8)
C40.0528 (13)0.0345 (10)0.0387 (11)0.0094 (9)0.0119 (9)0.0191 (9)
C30.0427 (11)0.0375 (11)0.0455 (12)0.0098 (9)0.0148 (9)0.0202 (9)
C20.0675 (16)0.0313 (11)0.0519 (13)0.0083 (10)0.0149 (12)0.0133 (10)
C10.0799 (19)0.0441 (13)0.0509 (14)0.0155 (12)0.0170 (13)0.0141 (11)
C140.082 (2)0.0566 (16)0.0553 (16)−0.0010 (14)0.0250 (15)−0.0027 (13)
O30.0874 (16)0.0820 (15)0.147 (2)0.0438 (13)0.0819 (16)0.0554 (15)
O20.0496 (10)0.0931 (14)0.0609 (11)0.0222 (9)0.0117 (8)0.0483 (10)
O10.0676 (13)0.1224 (19)0.0748 (14)0.0182 (13)−0.0027 (11)0.0614 (14)
N10.0436 (10)0.0380 (9)0.0576 (12)0.0144 (8)0.0184 (9)0.0250 (8)

Geometric parameters (Å, °)

Ag1—N42.1361 (17)C11—C121.504 (3)
Ag1—N22.1396 (17)C11—H11B0.9700
S1—C61.725 (3)C11—H11A0.9700
S1—C71.734 (2)C13—C141.474 (4)
S2—C91.719 (3)C13—H13B0.9700
S2—C81.730 (2)C13—H13A0.9700
O6—C121.195 (3)C6—C51.338 (3)
O7—C121.319 (3)C6—H60.9300
O7—C131.453 (3)C5—C41.485 (3)
O5—C31.189 (3)C4—C31.496 (3)
O4—C31.325 (3)C4—H4B0.9700
O4—C21.449 (3)C4—H4A0.9700
N3—C71.325 (3)C2—C11.489 (3)
N3—H3B0.8600C2—H2B0.9700
N3—H3A0.8600C2—H2A0.9700
N2—C71.311 (3)C1—H1C0.9600
N2—C51.390 (3)C1—H1B0.9600
N5—C81.321 (3)C1—H1A0.9600
N5—H5B0.8600C14—H14C0.9600
N5—H5A0.8600C14—H14B0.9600
N4—C81.311 (3)C14—H14A0.9600
N4—C101.389 (3)O3—N11.218 (3)
C9—C101.336 (3)O2—N11.236 (3)
C9—H90.9300O1—N11.221 (3)
C10—C111.491 (3)
N4—Ag1—N2175.88 (6)H13B—C13—H13A108.5
C6—S1—C789.44 (10)N2—C7—N3125.01 (19)
C9—S2—C889.17 (11)N2—C7—S1113.38 (16)
C12—O7—C13116.29 (18)N3—C7—S1121.60 (16)
C3—O4—C2117.66 (18)C5—C6—S1110.73 (17)
C7—N3—H3B120.0C5—C6—H6124.6
C7—N3—H3A120.0S1—C6—H6124.6
H3B—N3—H3A120.0C6—C5—N2114.81 (19)
C7—N2—C5111.58 (17)C6—C5—C4129.80 (19)
C7—N2—Ag1123.44 (14)N2—C5—C4115.38 (17)
C5—N2—Ag1124.52 (13)C5—C4—C3117.78 (18)
C8—N5—H5B120.0C5—C4—H4B107.9
C8—N5—H5A120.0C3—C4—H4B107.9
H5B—N5—H5A120.0C5—C4—H4A107.9
C8—N4—C10110.89 (17)C3—C4—H4A107.9
C8—N4—Ag1125.47 (13)H4B—C4—H4A107.2
C10—N4—Ag1123.65 (14)O5—C3—O4123.3 (2)
N4—C8—N5125.14 (19)O5—C3—C4127.6 (2)
N4—C8—S2113.98 (15)O4—C3—C4109.03 (18)
N5—C8—S2120.88 (17)O4—C2—C1106.58 (19)
C10—C9—S2110.93 (17)O4—C2—H2B110.4
C10—C9—H9124.5C1—C2—H2B110.4
S2—C9—H9124.5O4—C2—H2A110.4
C9—C10—N4115.0 (2)C1—C2—H2A110.4
C9—C10—C11125.5 (2)H2B—C2—H2A108.6
N4—C10—C11119.43 (19)C2—C1—H1C109.5
C10—C11—C12112.00 (19)C2—C1—H1B109.5
C10—C11—H11B109.2H1C—C1—H1B109.5
C12—C11—H11B109.2C2—C1—H1A109.5
C10—C11—H11A109.2H1C—C1—H1A109.5
C12—C11—H11A109.2H1B—C1—H1A109.5
H11B—C11—H11A107.9C13—C14—H14C109.5
O6—C12—O7123.2 (2)C13—C14—H14B109.5
O6—C12—C11124.5 (2)H14C—C14—H14B109.5
O7—C12—C11112.28 (19)C13—C14—H14A109.5
O7—C13—C14107.5 (2)H14C—C14—H14A109.5
O7—C13—H13B110.2H14B—C14—H14A109.5
C14—C13—H13B110.2O3—N1—O1122.3 (2)
O7—C13—H13A110.2O3—N1—O2119.3 (2)
C14—C13—H13A110.2O1—N1—O2118.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.862.132.955 (3)162
N3—H3B···O60.862.163.019 (3)175
N5—H5A···O1ii0.862.042.886 (3)169
N5—H5B···O2iii0.862.142.972 (3)161
C1—H1C···O3iv0.962.533.298 (3)137
C4—H4A···O30.972.603.492 (4)153
C4—H4B···O2iii0.972.433.330 (3)155

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+2; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2382).

References

  • Bolos, C. A., Fanourgakis, P. V., Christidis, P. C. & Nikolov, G. S. (1999). Polyhedron, 18, 1661–1668.
  • Bruker (2004). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chang, C. K., Myoung, S. K. & Ward, B. (1982). Chem. Commun. pp. 716–719.
  • Dong, X.-W., Wu, H. & Ma, J.-F. (2005). Acta Cryst. E61, m2400–m2401.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fun, H.-K., Jebas, S. R. & Balasubramanian, T. (2008). Acta Cryst. E64, m668–m669. [PMC free article] [PubMed]
  • Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev.105, 3978–4008. [PubMed]
  • Lee, H. K. & Lee, S. W. (2007). Bull. Korean Chem. Soc.28, 421–426.
  • Liu, B.-X., Chen, G.-H. & Zhang, L.-J. (2007). Acta Cryst. E63, m2263–m2264.
  • Nomiya, K., Takahashi, S., Noguchi, R., Nemoto, S., Takayama, T. & Oda, M. (2000). Inorg. Chem.39, 3301–3311. [PubMed]
  • Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, L.-J., Shen, X.-C. & Liang, H. (2008). Acta Cryst. E64, m1248. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography