PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2208.
Published online 2008 October 25. doi:  10.1107/S1600536808034636
PMCID: PMC2959693

N′-(Furan-2-ylmethyl­ene)-2-hydroxy­benzohydrazide

Abstract

In the title mol­ecule, C12H10N2O3, the aromatic and furan rings form a dihedral angle of 8.89 (1)° and an intra­molecular N—H(...)O hydrogen bond occurs. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into zigzag chains running along the c axis.

Related literature

For background on Schiff bases, see: Garnovskii et al. (1993 [triangle]); Anderson et al. (1997 [triangle]); Musie et al., (2001 [triangle]); Paul et al. (2002 [triangle]); Yang, (2006 [triangle]). For reference bond distances, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2208-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O3
  • M r = 230.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2208-efi1.jpg
  • a = 4.9898 (5) Å
  • b = 20.662 (2) Å
  • c = 10.6994 (11) Å
  • β = 101.421 (2)°
  • V = 1081.24 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 295 (2) K
  • 0.12 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.98, T max = 0.99
  • 5631 measured reflections
  • 1904 independent reflections
  • 1451 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.097
  • S = 1.02
  • 1904 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034636/bg2220sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034636/bg2220Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Postgraduate Foundation of Taishan University (No. Y07–2–16).

supplementary crystallographic information

Comment

Recently, a number of Schiff-bases have been investigated because of their coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Paul et al., 2002; Yang, 2006;) and biological systems (Anderson et al., 1997). In order to search for new Schiff-bases with higher bioactivity, the title compound, (I), was synthesized and its crystal structure determined. In (I) (Fig. 1), the bond lengths and angles are in good agreement with the expected values (Allen et al., 1987). In the crystal structure (Fig. 2), the molecules are linked into infinite chains by O—H···O hydrogen bonds. There is also an intramolecular N—H···O hydrogen bond.

Experimental

The title compound was synthesized by the reaction of 2-hydroxy-benzoic acid hydrazide(1 mmol, 152.2 mg) with furan-2-carbaldehyde(1 mmol, 96.2 mg) in ethanol(20 ml) under reflux conditions (348 K) for 5 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After six days orange crystals suitable for the X-ray diffraction study were obtained.

Refinement

All H atoms were placed in idealized positions (C—H = 0.93— 0.97 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, Uiso(H) = 1.2 or 1.5Ueq(C). while for those bound to N, Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The structure of the infinite chains formed via hydrogen bonds, H atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.

Crystal data

C12H10N2O3F(000) = 480
Mr = 230.22Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1748 reflections
a = 4.9898 (5) Åθ = 2.2–25.0°
b = 20.662 (2) ŵ = 0.10 mm1
c = 10.6994 (11) ÅT = 295 K
β = 101.421 (2)°Block, orange
V = 1081.24 (19) Å30.12 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer1904 independent reflections
Radiation source: fine-focus sealed tube1451 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −5→5
Tmin = 0.98, Tmax = 0.99k = −24→21
5631 measured reflectionsl = −11→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.0472P)2 + 0.1418P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1904 reflectionsΔρmax = 0.12 e Å3
156 parametersΔρmin = −0.12 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0107 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2921 (2)0.22463 (6)0.59528 (10)0.0611 (4)
H10.36150.22610.53200.092*
O20.2021 (2)0.22907 (5)0.97330 (9)0.0541 (3)
O3−0.6276 (3)0.42331 (7)0.68440 (12)0.0815 (4)
N10.0370 (2)0.26559 (6)0.77544 (11)0.0435 (3)
H1A0.03650.26380.69510.052*
N2−0.1342 (2)0.30720 (6)0.82213 (11)0.0422 (3)
C10.4351 (3)0.18305 (7)0.68139 (14)0.0415 (4)
C20.3961 (3)0.18397 (7)0.80733 (13)0.0385 (3)
C30.5525 (3)0.14165 (7)0.89334 (15)0.0493 (4)
H30.53120.14170.97780.059*
C40.7373 (3)0.09972 (8)0.85745 (16)0.0560 (4)
H40.84090.07230.91710.067*
C50.7674 (3)0.09876 (8)0.73201 (16)0.0549 (4)
H50.88920.06990.70650.066*
C60.6191 (3)0.14000 (8)0.64527 (15)0.0508 (4)
H60.64170.13920.56110.061*
C70.2058 (3)0.22765 (7)0.85884 (13)0.0397 (4)
C8−0.2876 (3)0.34231 (7)0.74000 (15)0.0483 (4)
H8−0.28340.33780.65390.058*
C9−0.4676 (3)0.38898 (7)0.77975 (14)0.0460 (4)
C10−0.5197 (3)0.40836 (8)0.89143 (17)0.0582 (5)
H10−0.43750.39280.97140.070*
C11−0.7221 (4)0.45682 (9)0.8659 (2)0.0668 (5)
H11−0.79910.47930.92540.080*
C12−0.7803 (4)0.46390 (9)0.7418 (2)0.0767 (6)
H12−0.90900.49280.69880.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0660 (8)0.0871 (9)0.0369 (6)0.0281 (6)0.0263 (5)0.0161 (6)
O20.0647 (7)0.0696 (8)0.0325 (6)0.0026 (6)0.0206 (5)0.0006 (5)
O30.0984 (10)0.0848 (9)0.0550 (8)0.0339 (8)0.0000 (7)−0.0057 (7)
N10.0502 (7)0.0512 (7)0.0328 (7)0.0022 (6)0.0171 (6)−0.0049 (6)
N20.0457 (7)0.0457 (7)0.0386 (7)−0.0034 (6)0.0167 (6)−0.0075 (6)
C10.0397 (8)0.0502 (9)0.0365 (8)−0.0013 (7)0.0120 (6)0.0019 (7)
C20.0386 (8)0.0434 (8)0.0350 (7)−0.0083 (6)0.0107 (6)−0.0015 (6)
C30.0566 (9)0.0529 (9)0.0388 (8)−0.0027 (8)0.0103 (7)0.0013 (7)
C40.0582 (10)0.0533 (10)0.0538 (10)0.0060 (8)0.0046 (8)0.0067 (8)
C50.0525 (10)0.0530 (10)0.0612 (11)0.0058 (8)0.0162 (8)−0.0053 (8)
C60.0512 (9)0.0611 (10)0.0439 (9)0.0048 (8)0.0185 (7)−0.0016 (8)
C70.0427 (8)0.0450 (8)0.0343 (8)−0.0099 (7)0.0146 (6)−0.0019 (7)
C80.0584 (10)0.0526 (9)0.0362 (8)−0.0008 (8)0.0147 (8)−0.0076 (7)
C90.0475 (9)0.0461 (9)0.0439 (9)−0.0030 (7)0.0080 (7)−0.0032 (7)
C100.0629 (11)0.0656 (11)0.0506 (10)0.0079 (9)0.0220 (8)−0.0004 (8)
C110.0634 (12)0.0592 (11)0.0856 (15)0.0003 (9)0.0337 (11)−0.0125 (10)
C120.0694 (13)0.0596 (12)0.0966 (17)0.0202 (10)0.0055 (12)−0.0088 (11)

Geometric parameters (Å, °)

O1—C11.3549 (17)C3—H30.9300
O1—H10.8200C4—C51.380 (2)
O2—C71.2288 (16)C4—H40.9300
O3—C121.359 (2)C5—C61.365 (2)
O3—C91.3633 (19)C5—H50.9300
N1—C71.3503 (18)C6—H60.9300
N1—N21.3737 (16)C8—C91.438 (2)
N1—H1A0.8600C8—H80.9300
N2—C81.2720 (19)C9—C101.334 (2)
C1—C61.387 (2)C10—C111.410 (2)
C1—C21.3991 (19)C10—H100.9300
C2—C31.391 (2)C11—C121.310 (3)
C2—C71.492 (2)C11—H110.9300
C3—C41.374 (2)C12—H120.9300
C1—O1—H1109.5C5—C6—C1120.69 (15)
C12—O3—C9106.28 (15)C5—C6—H6119.7
C7—N1—N2118.33 (11)C1—C6—H6119.7
C7—N1—H1A120.8O2—C7—N1120.95 (13)
N2—N1—H1A120.8O2—C7—C2121.25 (13)
C8—N2—N1115.98 (12)N1—C7—C2117.81 (12)
O1—C1—C6120.38 (13)N2—C8—C9120.25 (13)
O1—C1—C2119.43 (13)N2—C8—H8119.9
C6—C1—C2120.19 (14)C9—C8—H8119.9
C3—C2—C1117.51 (14)C10—C9—O3108.97 (14)
C3—C2—C7116.76 (12)C10—C9—C8135.24 (16)
C1—C2—C7125.71 (13)O3—C9—C8115.78 (14)
C4—C3—C2122.05 (14)C9—C10—C11107.40 (17)
C4—C3—H3119.0C9—C10—H10126.3
C2—C3—H3119.0C11—C10—H10126.3
C3—C4—C5119.29 (15)C12—C11—C10106.37 (17)
C3—C4—H4120.4C12—C11—H11126.8
C5—C4—H4120.4C10—C11—H11126.8
C6—C5—C4120.24 (15)C11—C12—O3110.96 (17)
C6—C5—H5119.9C11—C12—H12124.5
C4—C5—H5119.9O3—C12—H12124.5
C7—N1—N2—C8179.41 (13)C3—C2—C7—O24.9 (2)
O1—C1—C2—C3−178.33 (13)C1—C2—C7—O2−173.54 (14)
C6—C1—C2—C31.5 (2)C3—C2—C7—N1−175.00 (13)
O1—C1—C2—C70.1 (2)C1—C2—C7—N16.6 (2)
C6—C1—C2—C7179.90 (13)N1—N2—C8—C9−177.93 (12)
C1—C2—C3—C4−0.6 (2)C12—O3—C9—C10−0.45 (19)
C7—C2—C3—C4−179.16 (13)C12—O3—C9—C8179.81 (14)
C2—C3—C4—C5−0.8 (2)N2—C8—C9—C101.6 (3)
C3—C4—C5—C61.4 (3)N2—C8—C9—O3−178.74 (14)
C4—C5—C6—C1−0.5 (2)O3—C9—C10—C110.28 (19)
O1—C1—C6—C5178.84 (14)C8—C9—C10—C11179.95 (17)
C2—C1—C6—C5−1.0 (2)C9—C10—C11—C120.0 (2)
N2—N1—C7—O21.8 (2)C10—C11—C12—O3−0.3 (2)
N2—N1—C7—C2−178.36 (11)C9—O3—C12—C110.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.142.804 (2)139
N1—H1A···O10.861.992.650 (2)133

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2220).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Garnovskii, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem.40, 3336–3341. [PubMed]
  • Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem.41, 5803–5809. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, D.-S. (2006). Acta Cryst. E62, o1591–o1592.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography