PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2075.
Published online 2008 October 4. doi:  10.1107/S1600536808031358
PMCID: PMC2959691

4-{Eth­yl[(E)-4-(4-pyridylvin­yl)phenyl]­amino}benzaldehyde

Abstract

In the title mol­ecule, C22H20N2O, the central aromatic ring forms dihedral angles of 45.30 (2) and 69.43 (2)°, respectively, with the outer pyridine and benzene rings. In the crystal structure, weak inter­molecular C—H(...)O inter­actions link the mol­ecules into layers parallel to the ab plane.

Related literature

For related structure information, see: Allen et al. (1987 [triangle]). For general background, see: Marder (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2075-scheme1.jpg

Experimental

Crystal data

  • C22H20N2O
  • M r = 328.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2075-efi1.jpg
  • a = 8.8338 (14) Å
  • b = 9.5747 (18) Å
  • c = 10.472 (2) Å
  • α = 86.621 (2)°
  • β = 84.276 (1)°
  • γ = 83.886 (1)°
  • V = 875.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.50 × 0.40 × 0.36 mm

Data collection

  • Bruker SMART area-dectector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.963, T max = 0.973
  • 4562 measured reflections
  • 3036 independent reflections
  • 2092 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.209
  • S = 1.02
  • 3036 reflections
  • 228 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031358/cv2455sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031358/cv2455Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor D.-Q. Wang of Liaocheng University for hie assistance in the X-ray structure determination.

supplementary crystallographic information

Comment

Nonlinear optical (NLO) organic materials have been extensively studied due to their broad applications in the area of electronics and photonics (Marder, 2006). It has been found that the delocalized conjugated electrons contribute to enhancing the NLO response through their capability for hyperpolarization. As a part of our ongoing investigation of NLO materials, the title compound has been prepared. Its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles in the molecule are in agreement with the values reported in the literature (Allen et al., 1987). The C11—C14 and C15—C18 bond lengths are indicative of double-bond character. Therefore, there is a high electron delocalization in the π-system of the molecule. The dihedral angle formed by the pyridine ring and C8—C13 benzene ring is 45.30 (2)°.

In the crystal, weak intermolecular C—H···O interactions (Table 1) link the molecules into layers parallel to ab plane.

Experimental

For the preparation of 4-(N-ethyl-N-(4-((E)-2-(pyridin-4-yl) vinyl)phenyl)amino)benzaldehyde: A mixture of 4-(N-ethyl-N-(4-iodophenyl)amino)benzaldehyde (3.15 g, 10 mmol), Pd(OAc)2 (0.0330 g), triethylamine (15 ml) and 4-vinylpyridine (15 ml) were heated at 363 K with CH3CN (40 ml) as solvent for 40 h under nitrogen. The mixture was cooled to room temperature and added to 500 ml water. Plentiful yellow solid was obtained by filtration. This was dissolved in dichloromethane. The solution was washed twice with water, dried over anhydrous magnesium sulfate, then filtered and concentrated. The resulting solution was purified by flash column chromatography with dichloromethane as eluent to give light yellow crystals (1.95 mg, yield 56%).

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Crystal data

C22H20N2OZ = 2
Mr = 328.40F(000) = 348
Triclinic, P1Dx = 1.246 Mg m3
a = 8.8338 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5747 (18) ÅCell parameters from 1751 reflections
c = 10.472 (2) Åθ = 2.3–27.2°
α = 86.621 (2)°µ = 0.08 mm1
β = 84.276 (1)°T = 298 K
γ = 83.886 (1)°Block, yellow
V = 875.3 (3) Å30.50 × 0.40 × 0.36 mm

Data collection

Bruker APEX area-dectector diffractometer3036 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.963, Tmax = 0.973k = −11→11
4562 measured reflectionsl = −12→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.210w = 1/[σ2(Fo2) + (0.0993P)2 + 0.5822P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3036 reflectionsΔρmax = 0.59 e Å3
228 parametersΔρmin = −0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6686 (3)0.5962 (2)0.8163 (2)0.0589 (7)
N20.8199 (3)−0.3738 (3)0.3196 (3)0.0651 (7)
O1−0.0027 (3)0.9357 (3)0.8369 (3)0.0855 (8)
C10.1224 (4)0.9637 (3)0.8579 (3)0.0670 (9)
H10.12991.05400.88310.080*
C20.2628 (3)0.8680 (3)0.8471 (3)0.0543 (7)
C30.4016 (4)0.9124 (3)0.8714 (3)0.0637 (9)
H30.40351.00410.89560.076*
C40.5361 (4)0.8255 (3)0.8609 (3)0.0610 (8)
H40.62690.85890.87740.073*
C50.5362 (3)0.6866 (3)0.8254 (3)0.0502 (7)
C60.3954 (3)0.6420 (3)0.8015 (3)0.0503 (7)
H60.39210.55010.77870.060*
C70.2630 (3)0.7309 (3)0.8109 (2)0.0509 (7)
H70.17200.69890.79280.061*
C80.6755 (3)0.4681 (3)0.7520 (3)0.0502 (7)
C90.6535 (3)0.4731 (3)0.6235 (3)0.0496 (7)
H90.62910.55940.58100.060*
C100.6671 (3)0.3521 (3)0.5574 (3)0.0522 (7)
H100.64990.35770.47100.063*
C110.7055 (3)0.2228 (3)0.6162 (3)0.0518 (7)
C120.7281 (4)0.2186 (3)0.7447 (3)0.0635 (8)
H120.75440.13240.78670.076*
C130.7127 (4)0.3398 (3)0.8128 (3)0.0633 (8)
H130.72750.33430.89970.076*
C140.7174 (3)0.0976 (3)0.5376 (3)0.0604 (8)
H140.66890.10840.46220.073*
C150.7878 (3)−0.0247 (3)0.5623 (3)0.0611 (8)
H150.8373−0.03810.63710.073*
C160.7031 (4)−0.2750 (3)0.3192 (3)0.0608 (8)
H160.6279−0.28370.26490.073*
C170.6865 (3)−0.1606 (3)0.3941 (3)0.0600 (8)
H170.6028−0.09360.38820.072*
C180.7943 (3)−0.1442 (3)0.4789 (3)0.0545 (7)
C190.9135 (3)−0.2486 (3)0.4816 (3)0.0643 (8)
H190.9882−0.24580.53780.077*
C200.9211 (4)−0.3565 (3)0.4006 (3)0.0676 (9)
H201.0050−0.42380.40270.081*
C210.8183 (4)0.6392 (3)0.8480 (3)0.0650 (8)
H21A0.90100.57500.81060.078*
H21B0.83130.73270.81020.078*
C220.8276 (5)0.6394 (4)0.9886 (4)0.0863 (11)
H22A0.74730.70451.02570.129*
H22B0.92490.66711.00490.129*
H22C0.81650.54671.02620.129*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0578 (15)0.0496 (14)0.0732 (16)0.0037 (11)−0.0218 (12)−0.0252 (12)
N20.0703 (17)0.0542 (16)0.0700 (17)−0.0036 (13)0.0055 (14)−0.0210 (13)
O10.0712 (16)0.0721 (16)0.112 (2)0.0133 (13)−0.0176 (14)−0.0154 (14)
C10.078 (2)0.0516 (18)0.071 (2)0.0061 (16)−0.0103 (17)−0.0125 (15)
C20.0678 (19)0.0442 (16)0.0501 (15)0.0073 (13)−0.0110 (13)−0.0101 (12)
C30.083 (2)0.0386 (16)0.072 (2)0.0053 (15)−0.0229 (17)−0.0201 (14)
C40.0686 (19)0.0464 (17)0.0721 (19)−0.0005 (14)−0.0229 (16)−0.0194 (14)
C50.0638 (18)0.0415 (15)0.0471 (15)0.0014 (13)−0.0145 (13)−0.0127 (11)
C60.0606 (17)0.0398 (15)0.0516 (15)−0.0025 (12)−0.0052 (13)−0.0142 (12)
C70.0568 (17)0.0490 (16)0.0468 (15)−0.0011 (13)−0.0048 (12)−0.0100 (12)
C80.0500 (15)0.0428 (15)0.0591 (17)0.0025 (12)−0.0129 (13)−0.0148 (12)
C90.0467 (15)0.0452 (15)0.0567 (16)0.0033 (12)−0.0089 (12)−0.0077 (12)
C100.0503 (16)0.0568 (18)0.0496 (15)0.0012 (13)−0.0050 (12)−0.0145 (13)
C110.0479 (15)0.0506 (17)0.0574 (17)−0.0021 (12)−0.0007 (12)−0.0187 (13)
C120.073 (2)0.0423 (16)0.073 (2)0.0076 (14)−0.0090 (16)−0.0042 (14)
C130.082 (2)0.0547 (18)0.0540 (17)0.0067 (16)−0.0181 (15)−0.0105 (14)
C140.0536 (17)0.0574 (19)0.0694 (19)−0.0020 (14)0.0002 (14)−0.0120 (15)
C150.0547 (17)0.061 (2)0.0684 (19)−0.0023 (15)−0.0059 (15)−0.0121 (15)
C160.0619 (19)0.0567 (18)0.0651 (18)−0.0082 (15)−0.0029 (15)−0.0167 (15)
C170.0506 (17)0.0494 (17)0.077 (2)0.0035 (13)0.0046 (15)−0.0106 (15)
C180.0506 (16)0.0512 (17)0.0626 (17)−0.0125 (13)0.0054 (13)−0.0165 (13)
C190.0490 (17)0.071 (2)0.073 (2)−0.0028 (15)−0.0025 (14)−0.0155 (16)
C200.0600 (19)0.060 (2)0.078 (2)0.0078 (15)0.0071 (16)−0.0132 (17)
C210.0648 (19)0.0600 (19)0.071 (2)−0.0030 (15)−0.0064 (15)−0.0157 (15)
C220.098 (3)0.084 (3)0.081 (2)−0.003 (2)−0.033 (2)−0.012 (2)

Geometric parameters (Å, °)

N1—C51.378 (3)C11—C121.377 (4)
N1—C81.426 (3)C11—C141.483 (4)
N1—C211.500 (4)C12—C131.385 (4)
N2—C201.321 (4)C12—H120.9300
N2—C161.323 (4)C13—H130.9300
O1—C11.208 (4)C14—C151.291 (4)
C1—C21.461 (4)C14—H140.9300
C1—H10.9300C15—C181.473 (4)
C2—C71.388 (4)C15—H150.9300
C2—C31.391 (4)C16—C171.372 (4)
C3—C41.374 (4)C16—H160.9300
C3—H30.9300C17—C181.391 (4)
C4—C51.402 (4)C17—H170.9300
C4—H40.9300C18—C191.374 (4)
C5—C61.408 (4)C19—C201.367 (4)
C6—C71.370 (4)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—H70.9300C21—C221.482 (5)
C8—C131.373 (4)C21—H21A0.9700
C8—C91.375 (4)C21—H21B0.9700
C9—C101.373 (4)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.375 (4)C22—H22C0.9600
C10—H100.9300
C5—N1—C8120.6 (2)C11—C12—H12119.3
C5—N1—C21122.0 (2)C13—C12—H12119.3
C8—N1—C21116.3 (2)C8—C13—C12120.0 (3)
C20—N2—C16115.0 (3)C8—C13—H13120.0
O1—C1—C2125.7 (3)C12—C13—H13120.0
O1—C1—H1117.2C15—C14—C11127.0 (3)
C2—C1—H1117.2C15—C14—H14116.5
C7—C2—C3117.8 (3)C11—C14—H14116.5
C7—C2—C1121.4 (3)C14—C15—C18123.7 (3)
C3—C2—C1120.8 (3)C14—C15—H15118.1
C4—C3—C2122.3 (3)C18—C15—H15118.1
C4—C3—H3118.9N2—C16—C17123.9 (3)
C2—C3—H3118.9N2—C16—H16118.1
C3—C4—C5120.0 (3)C17—C16—H16118.1
C3—C4—H4120.0C16—C17—C18120.3 (3)
C5—C4—H4120.0C16—C17—H17119.8
N1—C5—C4121.4 (3)C18—C17—H17119.8
N1—C5—C6121.1 (2)C19—C18—C17115.8 (3)
C4—C5—C6117.5 (3)C19—C18—C15119.7 (3)
C7—C6—C5121.6 (3)C17—C18—C15124.5 (3)
C7—C6—H6119.2C20—C19—C18119.2 (3)
C5—C6—H6119.2C20—C19—H19120.4
C6—C7—C2120.8 (3)C18—C19—H19120.4
C6—C7—H7119.6N2—C20—C19125.8 (3)
C2—C7—H7119.6N2—C20—H20117.1
C13—C8—C9118.8 (3)C19—C20—H20117.1
C13—C8—N1121.8 (3)C22—C21—N1112.0 (3)
C9—C8—N1119.3 (3)C22—C21—H21A109.2
C10—C9—C8120.7 (3)N1—C21—H21A109.2
C10—C9—H9119.6C22—C21—H21B109.2
C8—C9—H9119.6N1—C21—H21B109.2
C9—C10—C11121.4 (3)H21A—C21—H21B107.9
C9—C10—H10119.3C21—C22—H22A109.5
C11—C10—H10119.3C21—C22—H22B109.5
C10—C11—C12117.6 (3)H22A—C22—H22B109.5
C10—C11—C14117.8 (3)C21—C22—H22C109.5
C12—C11—C14124.6 (3)H22A—C22—H22C109.5
C11—C12—C13121.5 (3)H22B—C22—H22C109.5
O1—C1—C2—C7−0.4 (5)C9—C10—C11—C120.8 (4)
O1—C1—C2—C3178.8 (3)C9—C10—C11—C14179.9 (3)
C7—C2—C3—C4−0.2 (5)C10—C11—C12—C130.1 (5)
C1—C2—C3—C4−179.4 (3)C14—C11—C12—C13−178.9 (3)
C2—C3—C4—C5−0.4 (5)C9—C8—C13—C120.3 (5)
C8—N1—C5—C4−165.1 (3)N1—C8—C13—C12−175.7 (3)
C21—N1—C5—C42.2 (4)C11—C12—C13—C8−0.7 (5)
C8—N1—C5—C615.9 (4)C10—C11—C14—C15160.8 (3)
C21—N1—C5—C6−176.8 (3)C12—C11—C14—C15−20.1 (5)
C3—C4—C5—N1−178.9 (3)C11—C14—C15—C18180.0 (3)
C3—C4—C5—C60.1 (4)C20—N2—C16—C171.2 (5)
N1—C5—C6—C7179.7 (3)N2—C16—C17—C18−1.3 (5)
C4—C5—C6—C70.7 (4)C16—C17—C18—C19−0.3 (4)
C5—C6—C7—C2−1.3 (4)C16—C17—C18—C15179.3 (3)
C3—C2—C7—C61.0 (4)C14—C15—C18—C19154.8 (3)
C1—C2—C7—C6−179.8 (3)C14—C15—C18—C17−24.9 (5)
C5—N1—C8—C13−122.4 (3)C17—C18—C19—C201.9 (4)
C21—N1—C8—C1369.6 (4)C15—C18—C19—C20−177.8 (3)
C5—N1—C8—C961.7 (4)C16—N2—C20—C190.5 (5)
C21—N1—C8—C9−106.4 (3)C18—C19—C20—N2−2.1 (5)
C13—C8—C9—C100.6 (4)C5—N1—C21—C2276.9 (4)
N1—C8—C9—C10176.6 (2)C8—N1—C21—C22−115.3 (3)
C8—C9—C10—C11−1.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C21—H21B···O1i0.972.603.384 (4)138
C15—H15···O1ii0.932.633.553 (4)175

Symmetry codes: (i) x+1, y, z; (ii) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2455).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Marder, S. R. (2006). Chem. Commun. pp. 131–134. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography