PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1375.
Published online 2008 October 9. doi:  10.1107/S1600536808009781
PMCID: PMC2959685

Diethyl­enetriaminium hexa­fluorido­titanate(IV) fluoride

Abstract

The title compound, (C6H21N4)[TiF6]F, was synthesized by the reaction of TiO2, tris­(2-amino­ethyl)amine, HF and ethanol at 463 K in a microwave oven. The crystal structure consists of two crystallographically independent [TiF6]2− anions, two fluoride anions and two triply-protonated tris­(2-amino­ethyl)­amine cations. The Ti atoms are coordinated by six F atoms within slightly distorted octa­hedra. The anions and cations are connected by inter­molecular N—H(...)F hydrogen bonds.

Related literature

For background, see: Adil et al. (2006 [triangle]). For related structures, see: Calov et al. (1992 [triangle]); Dadachov et al. (2000 [triangle]); Tang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1375-scheme1.jpg

Experimental

Crystal data

  • (C6H21N4)[TiF6]F
  • M r = 330.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1375-efi1.jpg
  • a = 16.265 (4) Å
  • b = 8.089 (3) Å
  • c = 21.778 (5) Å
  • β = 110.54 (2)°
  • V = 2683.1 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 298 (2) K
  • 0.18 × 0.13 × 0.06 mm

Data collection

  • Siemens AED2 diffractometer
  • Absorption correction: Gaussian (SHELX76; Sheldrick, 2008 [triangle]) T min = 0.850, T max = 0.929
  • 6191 measured reflections
  • 6133 independent reflections
  • 3531 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 120 min intensity decay: 15%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.155
  • S = 1.12
  • 6133 reflections
  • 332 parameters
  • H-atom parameters constrained
  • Δρmax = 1.37 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: STADI4 (Stoe & Cie, 1998 [triangle]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009781/nc2095sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009781/nc2095Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

To date, only a few organic-inorganic fluorotitanates were reported. The first compound {(CN3H6)[TiF6]}, described by Calov et al. (1992), is built up from (TiF6) monomers and guanidinium cations. Dadachov et al. (2000) and Tang et al. (2001) reported the synthesis of piperazinium {(C4N2H12)2[Ti2F10]2(H2O)} and piperidinium {[C5H6N2]2(Ti2F11)(H3O)(H20)} fluorotitanates respectively, built up from (Ti2F10)2- or (Ti2F11)3- dimers. As a part of our ongoing investigations in this field (Adil et al., 2006)) we now report the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) consits of two crystallographically independent (TiF6)2- anions, two fluoride anions and two triprotonated tris(2-aminoethyl)amine (tren) cations, all of them located in general positions (Fig. 1). The TiF6 anions form sligthly distorted octahedra and the environnement of both independent anions is different (Table 1). Both TiF6 anions are connected to the cations via N—H···F hydrogen bonding (Figure 2 and Table 2).

The two isolated fluoride anions are also hydrogen bonded to the [H3tren]3+ cations with N—H···F distances ranging from 2.692 (5)Å to 2.791 (5)Å (Figure 2 and Table 2).

Experimental

The synthetis was performed by using a microwave-assisted route. Crystals were prepared from a mixture of titanium(IV) oxide (79 mg, 1 mmol), tris(2-aminoethyl)amine (0.230 ml, 1.52 mmol), hydrogen fluoride (40%, 0.130 ml, 2.95 mmol) and ethanol (10 ml, 35 mmol). The mixture was transferred into a teflon autoclave installed in a CEM microwave oven at 493 K for 1 hour under a constant pressure of 22 bar. Finally, the solid product was washed with ethanol and dried in air at room temperature to yield colourless paralellepipeds of (I).

Refinement

A number of mis-measured reflections were omitted from the refinement.

The hydrogen atoms were positioned with idealized geometry (C—H = 0.88-0.97Å, N—H = 0.89Å) and modelled as riding with a group Uiso value refined.

The highest difference is 2.49 Å from H4A. It might be that this peak corresponds to a small amount of water, which cannot be proven. Therefore, this electron density was not considered in the final refinement.

Figures

Fig. 1.
Crystal structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
Fig. 2.
Crystal packing of (I) with view along [010]. Hydrogen bonding is shown as dashed lines.

Crystal data

(C6H21N4)[TiF6]FF(000) = 1360
Mr = 330.14Dx = 1.635 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 32 reflections
a = 16.265 (4) Åθ = 29.1–30.9°
b = 8.089 (3) ŵ = 0.71 mm1
c = 21.778 (5) ÅT = 298 K
β = 110.54 (2)°Parallelepiped, colourless
V = 2683.1 (13) Å30.18 × 0.13 × 0.06 mm
Z = 8

Data collection

Siemens AED2 diffractometer3531 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 27.5°, θmin = 2.0°
2θ/ω scansh = −21→19
Absorption correction: gaussian (SHELX76; Sheldrick, 2008)k = 0→10
Tmin = 0.850, Tmax = 0.929l = 0→28
6191 measured reflections3 standard reflections every 120 min
6133 independent reflections intensity decay: 15%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0532P)2 + 2.5558P] where P = (Fo2 + 2Fc2)/3
6133 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ti10.18135 (5)0.59284 (10)0.60307 (4)0.02406 (18)
Ti20.70766 (5)0.58675 (11)0.64839 (4)0.0319 (2)
F10.1489 (3)0.5816 (4)0.51539 (14)0.0687 (10)
F20.07464 (18)0.5254 (4)0.60403 (17)0.0582 (9)
F30.29513 (18)0.6604 (4)0.61299 (17)0.0539 (8)
F40.14665 (19)0.8126 (3)0.59720 (15)0.0469 (7)
F50.2192 (2)0.3737 (3)0.61004 (16)0.0492 (8)
F60.2182 (2)0.6079 (5)0.69502 (13)0.0557 (9)
F70.72742 (19)0.7113 (4)0.58528 (14)0.0518 (8)
F80.6614 (2)0.4174 (4)0.59328 (14)0.0631 (10)
F90.5986 (2)0.6765 (4)0.6291 (2)0.0817 (13)
F100.81774 (18)0.4997 (4)0.66930 (15)0.0494 (8)
F110.7527 (2)0.7485 (4)0.70991 (15)0.0533 (8)
F120.6933 (2)0.4627 (4)0.71561 (15)0.0555 (9)
N10.4459 (2)0.1509 (5)0.60450 (17)0.0276 (8)
C10.5134 (3)0.0224 (6)0.6192 (2)0.0361 (11)
H1A0.5186−0.01590.57850.044 (2)*
H1B0.4952−0.07080.63940.044 (2)*
C20.6020 (3)0.0814 (6)0.6642 (2)0.0342 (10)
H2A0.6448−0.00630.67030.044 (2)*
H2B0.62060.17480.64440.044 (2)*
N20.5983 (2)0.1311 (5)0.72899 (18)0.0333 (9)
H2C0.56350.21880.72390.044 (2)*
H2D0.65210.15650.75600.044 (2)*
H2E0.57730.04790.74580.044 (2)*
C30.4511 (3)0.2578 (6)0.5509 (2)0.0392 (12)
H3A0.42460.20120.50930.044 (2)*
H3B0.51230.27840.55710.044 (2)*
C40.4048 (3)0.4209 (7)0.5489 (2)0.0418 (12)
H4A0.40780.48630.51240.044 (2)*
H4B0.34340.40060.54190.044 (2)*
N30.4453 (3)0.5149 (5)0.61097 (19)0.0379 (9)
H3C0.45950.44550.64480.044 (2)*
H3D0.40730.58940.61500.044 (2)*
H3E0.49350.56600.61030.044 (2)*
C50.3582 (3)0.0778 (7)0.5890 (2)0.0394 (11)
H5A0.3532−0.01870.56150.044 (2)*
H5B0.31420.15720.56450.044 (2)*
C60.3406 (3)0.0281 (6)0.6498 (3)0.0399 (12)
H6A0.2837−0.02530.63730.044 (2)*
H6B0.3847−0.05120.67430.044 (2)*
N40.3420 (2)0.1714 (5)0.69203 (18)0.0375 (10)
H4C0.39410.22080.70360.044 (2)*
H4D0.33250.13730.72780.044 (2)*
H4E0.30020.24250.67020.044 (2)*
N50.0735 (2)0.5437 (4)0.89540 (17)0.0257 (8)
C7−0.0032 (3)0.6180 (6)0.9046 (2)0.0303 (10)
H7A0.01290.72390.92630.044 (2)*
H7B−0.02320.54710.93240.044 (2)*
C8−0.0768 (3)0.6422 (6)0.8393 (2)0.0371 (11)
H8A−0.12570.69770.84620.044 (2)*
H8B−0.05660.71120.81110.044 (2)*
N6−0.1063 (2)0.4800 (5)0.80724 (18)0.0396 (10)
H6C−0.06020.42450.80490.044 (2)*
H6D−0.14470.49620.76700.044 (2)*
H6E−0.13160.42220.83050.044 (2)*
C90.1286 (3)0.4546 (6)0.9547 (2)0.0330 (10)
H9A0.13480.52160.99300.044 (2)*
H9B0.18670.43860.95260.044 (2)*
C100.0905 (3)0.2884 (6)0.9620 (2)0.0324 (10)
H10A0.12380.24251.00470.044 (2)*
H10B0.03040.30300.95980.044 (2)*
N70.0924 (3)0.1710 (5)0.91024 (19)0.0350 (9)
H7C0.06330.21410.87100.044 (2)*
H7D0.06730.07630.91480.044 (2)*
H7E0.14780.15220.91380.044 (2)*
C110.1253 (3)0.6685 (5)0.8757 (2)0.0309 (10)
H11A0.16710.71860.91470.044 (2)*
H11B0.08640.75480.85080.044 (2)*
C120.1743 (3)0.5946 (6)0.8347 (2)0.0319 (10)
H12A0.21050.67890.82520.044 (2)*
H12B0.21260.50690.85920.044 (2)*
N80.1116 (2)0.5266 (5)0.77194 (18)0.0329 (9)
H8C0.08500.43780.78040.044 (2)*
H8D0.14080.49860.74580.044 (2)*
H8E0.07160.60300.75230.044 (2)*
F130.48067 (17)0.3777 (3)0.73054 (12)0.0381 (6)
F140.00692 (17)0.2652 (3)0.78508 (13)0.0362 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ti10.0232 (4)0.0229 (4)0.0258 (4)0.0008 (3)0.0081 (3)−0.0022 (3)
Ti20.0313 (4)0.0306 (4)0.0335 (4)0.0001 (4)0.0109 (3)0.0052 (4)
F10.116 (3)0.052 (2)0.0285 (15)0.000 (2)0.0141 (17)−0.0044 (16)
F20.0296 (15)0.0481 (19)0.096 (3)−0.0058 (14)0.0206 (16)0.0027 (18)
F30.0365 (16)0.0480 (18)0.088 (2)−0.0072 (14)0.0353 (17)−0.0135 (17)
F40.0507 (18)0.0262 (15)0.064 (2)0.0073 (13)0.0211 (15)−0.0005 (14)
F50.0505 (17)0.0293 (16)0.066 (2)0.0112 (13)0.0185 (15)0.0061 (14)
F60.0519 (18)0.086 (2)0.0284 (15)−0.0037 (18)0.0125 (13)−0.0022 (16)
F70.0519 (18)0.0520 (19)0.0443 (17)−0.0129 (15)0.0079 (14)0.0156 (15)
F80.088 (2)0.055 (2)0.0351 (16)−0.0295 (19)0.0079 (16)0.0026 (16)
F90.0399 (19)0.046 (2)0.163 (4)0.0094 (16)0.041 (2)0.025 (2)
F100.0447 (17)0.0482 (19)0.0568 (18)0.0151 (15)0.0196 (15)0.0040 (16)
F110.071 (2)0.0408 (17)0.0527 (19)−0.0096 (16)0.0270 (17)−0.0140 (15)
F120.094 (2)0.0410 (17)0.0477 (18)−0.0066 (17)0.0445 (18)0.0021 (14)
N10.0255 (18)0.0327 (19)0.0250 (18)0.0021 (15)0.0096 (15)−0.0017 (16)
C10.041 (3)0.031 (2)0.037 (3)0.009 (2)0.015 (2)−0.002 (2)
C20.028 (2)0.033 (2)0.043 (3)0.010 (2)0.015 (2)0.007 (2)
N20.0265 (19)0.032 (2)0.035 (2)−0.0022 (16)0.0028 (16)0.0040 (17)
C30.044 (3)0.052 (3)0.023 (2)0.007 (2)0.014 (2)0.003 (2)
C40.042 (3)0.050 (3)0.029 (2)0.008 (3)0.008 (2)0.013 (2)
N30.034 (2)0.034 (2)0.044 (2)0.0034 (18)0.0114 (19)0.0111 (19)
C50.031 (2)0.044 (3)0.037 (3)−0.005 (2)0.004 (2)−0.014 (2)
C60.033 (2)0.031 (2)0.055 (3)−0.008 (2)0.015 (2)0.004 (2)
N40.029 (2)0.052 (3)0.033 (2)−0.0063 (19)0.0137 (17)0.0057 (19)
N50.0284 (18)0.0223 (18)0.0283 (18)−0.0008 (14)0.0121 (15)0.0013 (14)
C70.032 (2)0.030 (2)0.035 (2)0.0019 (19)0.0192 (19)−0.0014 (19)
C80.036 (3)0.037 (3)0.042 (3)0.014 (2)0.018 (2)0.013 (2)
N60.032 (2)0.053 (3)0.031 (2)0.0091 (19)0.0073 (17)0.003 (2)
C90.030 (2)0.036 (3)0.025 (2)0.0015 (19)−0.0001 (18)−0.0033 (19)
C100.042 (3)0.030 (2)0.024 (2)0.006 (2)0.010 (2)0.0087 (19)
N70.045 (2)0.026 (2)0.038 (2)0.0029 (18)0.0197 (19)0.0046 (17)
C110.036 (2)0.023 (2)0.038 (3)−0.0053 (19)0.019 (2)−0.0027 (19)
C120.025 (2)0.031 (2)0.044 (3)−0.003 (2)0.0176 (19)0.000 (2)
N80.039 (2)0.030 (2)0.038 (2)0.0009 (17)0.0249 (18)0.0004 (17)
F130.0377 (15)0.0401 (16)0.0357 (15)−0.0005 (12)0.0119 (12)−0.0088 (12)
F140.0398 (15)0.0338 (15)0.0352 (14)−0.0026 (12)0.0134 (12)−0.0064 (12)

Geometric parameters (Å, °)

Ti1—F11.796 (3)C6—N41.475 (6)
Ti1—F21.826 (3)C6—H6A0.9700
Ti1—F41.856 (3)C6—H6B0.9700
Ti1—F51.865 (3)N4—H4C0.8900
Ti1—F31.868 (3)N4—H4D0.8900
Ti1—F61.882 (3)N4—H4E0.8900
Ti2—F81.803 (3)N5—C71.459 (5)
Ti2—F71.821 (3)N5—C111.472 (5)
Ti2—F91.825 (3)N5—C91.475 (5)
Ti2—F101.827 (3)C7—C81.516 (6)
Ti2—F111.832 (3)C7—H7A0.9700
Ti2—F121.856 (3)C7—H7B0.9700
N1—C11.463 (6)C8—N61.484 (6)
N1—C51.470 (6)C8—H8A0.9700
N1—C31.479 (6)C8—H8B0.9700
C1—C21.507 (6)N6—H6C0.8900
C1—H1A0.9700N6—H6D0.8900
C1—H1B0.9700N6—H6E0.8900
C2—N21.487 (6)C9—C101.512 (6)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
N2—H2C0.8900C10—N71.483 (6)
N2—H2D0.8900C10—H10A0.9700
N2—H2E0.8900C10—H10B0.9700
C3—C41.512 (7)N7—H7C0.8900
C3—H3A0.9700N7—H7D0.8900
C3—H3B0.9700N7—H7E0.8900
C4—N31.489 (6)C11—C121.513 (6)
C4—H4A0.9700C11—H11A0.9700
C4—H4B0.9700C11—H11B0.9700
N3—H3C0.8900C12—N81.494 (6)
N3—H3D0.8900C12—H12A0.9700
N3—H3E0.8900C12—H12B0.9700
C5—C61.504 (7)N8—H8C0.8900
C5—H5A0.9700N8—H8D0.8900
C5—H5B0.9700N8—H8E0.8900
F1—Ti1—F294.09 (17)N1—C5—H5B109.2
F1—Ti1—F490.38 (15)C6—C5—H5B109.2
F2—Ti1—F491.12 (14)H5A—C5—H5B107.9
F1—Ti1—F590.21 (15)N4—C6—C5111.9 (4)
F2—Ti1—F590.17 (14)N4—C6—H6A109.2
F4—Ti1—F5178.55 (14)C5—C6—H6A109.2
F1—Ti1—F392.71 (17)N4—C6—H6B109.2
F2—Ti1—F3173.16 (16)C5—C6—H6B109.2
F4—Ti1—F389.59 (14)H6A—C6—H6B107.9
F5—Ti1—F389.06 (14)C6—N4—H4C109.5
F1—Ti1—F6178.38 (17)C6—N4—H4D109.5
F2—Ti1—F687.50 (15)H4C—N4—H4D109.5
F4—Ti1—F689.26 (15)C6—N4—H4E109.5
F5—Ti1—F690.11 (15)H4C—N4—H4E109.5
F3—Ti1—F685.71 (15)H4D—N4—H4E109.5
F8—Ti2—F793.49 (14)C7—N5—C11111.2 (3)
F8—Ti2—F990.23 (18)C7—N5—C9111.6 (3)
F7—Ti2—F991.21 (16)C11—N5—C9110.8 (3)
F8—Ti2—F1090.95 (16)N5—C7—C8110.9 (4)
F7—Ti2—F1089.10 (15)N5—C7—H7A109.5
F9—Ti2—F10178.75 (19)C8—C7—H7A109.5
F8—Ti2—F11175.05 (15)N5—C7—H7B109.5
F7—Ti2—F1191.46 (15)C8—C7—H7B109.5
F9—Ti2—F1189.50 (18)H7A—C7—H7B108.0
F10—Ti2—F1189.29 (15)N6—C8—C7110.2 (4)
F8—Ti2—F1288.59 (14)N6—C8—H8A109.6
F7—Ti2—F12177.05 (15)C7—C8—H8A109.6
F9—Ti2—F1290.86 (17)N6—C8—H8B109.6
F10—Ti2—F1288.78 (15)C7—C8—H8B109.6
F11—Ti2—F1286.47 (14)H8A—C8—H8B108.1
C1—N1—C5111.0 (4)C8—N6—H6C109.5
C1—N1—C3110.0 (4)C8—N6—H6D109.5
C5—N1—C3111.9 (4)H6C—N6—H6D109.5
N1—C1—C2112.9 (4)C8—N6—H6E109.5
N1—C1—H1A109.0H6C—N6—H6E109.5
C2—C1—H1A109.0H6D—N6—H6E109.5
N1—C1—H1B109.0N5—C9—C10112.4 (3)
C2—C1—H1B109.0N5—C9—H9A109.1
H1A—C1—H1B107.8C10—C9—H9A109.1
N2—C2—C1110.8 (4)N5—C9—H9B109.1
N2—C2—H2A109.5C10—C9—H9B109.1
C1—C2—H2A109.5H9A—C9—H9B107.9
N2—C2—H2B109.5N7—C10—C9111.7 (4)
C1—C2—H2B109.5N7—C10—H10A109.3
H2A—C2—H2B108.1C9—C10—H10A109.3
C2—N2—H2C109.5N7—C10—H10B109.3
C2—N2—H2D109.5C9—C10—H10B109.3
H2C—N2—H2D109.5H10A—C10—H10B107.9
C2—N2—H2E109.5C10—N7—H7C109.5
H2C—N2—H2E109.5C10—N7—H7D109.5
H2D—N2—H2E109.5H7C—N7—H7D109.5
N1—C3—C4111.6 (4)C10—N7—H7E109.5
N1—C3—H3A109.3H7C—N7—H7E109.5
C4—C3—H3A109.3H7D—N7—H7E109.5
N1—C3—H3B109.3N5—C11—C12112.0 (4)
C4—C3—H3B109.3N5—C11—H11A109.2
H3A—C3—H3B108.0C12—C11—H11A109.2
N3—C4—C3111.2 (4)N5—C11—H11B109.2
N3—C4—H4A109.4C12—C11—H11B109.2
C3—C4—H4A109.4H11A—C11—H11B107.9
N3—C4—H4B109.4N8—C12—C11110.7 (3)
C3—C4—H4B109.4N8—C12—H12A109.5
H4A—C4—H4B108.0C11—C12—H12A109.5
C4—N3—H3C109.5N8—C12—H12B109.5
C4—N3—H3D109.5C11—C12—H12B109.5
H3C—N3—H3D109.5H12A—C12—H12B108.1
C4—N3—H3E109.5C12—N8—H8C109.5
H3C—N3—H3E109.5C12—N8—H8D109.5
H3D—N3—H3E109.5H8C—N8—H8D109.5
N1—C5—C6112.0 (4)C12—N8—H8E109.5
N1—C5—H5A109.2H8C—N8—H8E109.5
C6—C5—H5A109.2H8D—N8—H8E109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2C···F130.891.902.773 (5)165
N2—H2D···F6i0.892.042.865 (5)154
N2—H2E···F13i0.891.842.725 (5)172
N3—H3C···F130.891.862.700 (5)157
N3—H3C···N10.892.522.948 (6)110
N3—H3D···F30.891.902.726 (5)154
N3—H3E···F90.891.842.717 (5)167
N4—H4C···F130.891.832.692 (5)162
N4—H4D···F12i0.892.012.835 (5)153
N4—H4E···F50.891.842.712 (5)168
N6—H6C···F140.891.842.696 (5)162
N6—H6D···F10ii0.892.002.823 (5)154
N6—H6E···F4iii0.891.902.749 (5)160
N7—H7C···F140.891.822.699 (5)169
N7—H7D···F2iii0.892.242.876 (5)129
N7—H7E···F7i0.892.082.916 (5)157
N7—H7E···F10i0.892.412.972 (5)121
N8—H8C···F140.891.912.791 (5)168
N8—H8D···F60.892.142.879 (5)140
N8—H8E···F14iv0.891.812.702 (5)177

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) −x, y−1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2095).

References

  • Adil, K., Ben Ali, A., Leblanc, M. & Maisonneuve, V. (2006). Solid State Sci.8, 698–703.
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Calov, U., Schneider, M. & Leibnitz, P. (1992). Z. Anorg. Allg. Chem.593, 90–98.
  • Dadachov, M. S., Tang, L. Q. & Zou, X. D. (2000). Z. Kristallogr. New Cryst. Struct.215, 605–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (1998). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  • Tang, L.-Q., Dadachov, M. S. & Zou, X.-D. (2001). Z. Kristallogr. New Cryst. Struct.216, 387–388.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography