PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2105.
Published online 2008 October 11. doi:  10.1107/S1600536808031942
PMCID: PMC2959679

N-(Pyrazin-2-yl)aniline

Abstract

The two aromatic rings in the title compound, C10H9N3, are inclined at 15.2 (1)° to each other; this opens up the angle at the amino N atom to 130.4 (1)°. The amino N atom forms a hydrogen bond to the 4-N atom of an adjacent mol­ecule to create a chain motif.

Related literature

For the structure of amino­pyrazine, see: Chao et al. (1976 [triangle]). For the structure of 2-pyrazinyl-N-2-nitro­phenyl­aniline; see: Parsons et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2105-scheme1.jpg

Experimental

Crystal data

  • C10H9N3
  • M r = 171.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2105-efi1.jpg
  • a = 11.0644 (3) Å
  • b = 7.8423 (3) Å
  • c = 10.8907 (3) Å
  • β = 116.439 (2)°
  • V = 846.15 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 (2) K
  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: none
  • 5664 measured reflections
  • 1934 independent reflections
  • 1463 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.101
  • S = 1.03
  • 1934 reflections
  • 122 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031942/pk2121sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031942/pk2121Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Malaya for supporting this study (grant Nos. FS 358/2008A and FA 067/2006A).

supplementary crystallographic information

Comment

There are few structural examples of pyrazine compounds having an amino substituent; these are limited to, for example, aminopyrazine (Chao et al., 1976) and pyrazinyl-N-2-nitrophenylaniline (Parsons et al., 2006). In the title compound (Scheme I, Fig. 1), the two aromatic rings are aligned at 15.2 (1)°; these open up the angle at the amino nitrogen to 130.4 (1) °. The amino nitrogen forms a hydrogen bond to the 4-nitrogen atom of an adjacent molecule to furnish a chain motif.

Experimental

Chloropyrazine (1 ml, 1.1 mmol) and aniline (1 ml, 1.1 mmol) were heated at 423–433 K for 3 h. The solid was dissolved in water. The compound was extracted with ether. The ether extract was dried over sodium sulfate; evaporation of the solvent gave a colorless crystals among some unidentified dark brown materials.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.88 (1) Å.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C10H9N3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C10H9N3F(000) = 360
Mr = 171.20Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3723 reflections
a = 11.0644 (3) Åθ = 3.3–26.4°
b = 7.8423 (3) ŵ = 0.09 mm1
c = 10.8907 (3) ÅT = 100 K
β = 116.439 (2)°Prism, colourless
V = 846.15 (5) Å30.20 × 0.10 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer1463 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 27.5°, θmin = 3.3°
ω scansh = −14→14
5664 measured reflectionsk = −10→10
1934 independent reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0421P)2 + 0.247P] where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.36080 (11)0.49391 (15)0.56127 (12)0.0188 (3)
H10.4485 (9)0.479 (2)0.6153 (13)0.024 (4)*
N20.36741 (11)0.89784 (15)0.72193 (11)0.0205 (3)
N30.18404 (11)0.69151 (16)0.51024 (12)0.0221 (3)
C10.29407 (14)0.36077 (18)0.46992 (13)0.0181 (3)
C20.37632 (14)0.23785 (18)0.45198 (14)0.0201 (3)
H20.47170.24790.50070.024*
C30.32046 (15)0.1019 (2)0.36410 (15)0.0246 (3)
H30.37750.01880.35340.029*
C40.18124 (15)0.0862 (2)0.29138 (15)0.0255 (3)
H40.1427−0.00580.22930.031*
C50.09930 (14)0.20604 (19)0.31037 (14)0.0235 (3)
H50.00400.19480.26170.028*
C60.15425 (14)0.34292 (18)0.39962 (14)0.0204 (3)
H60.09690.42360.41250.025*
C70.31216 (13)0.64466 (17)0.58462 (13)0.0174 (3)
C80.40342 (13)0.74982 (17)0.69058 (14)0.0184 (3)
H80.49410.71270.74120.022*
C90.23812 (14)0.94629 (19)0.64641 (14)0.0232 (3)
H90.20781.05220.66490.028*
C100.14961 (14)0.84350 (19)0.54274 (15)0.0245 (3)
H100.05940.88200.49140.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0140 (6)0.0182 (6)0.0186 (6)0.0013 (5)0.0023 (5)−0.0019 (5)
N20.0201 (6)0.0197 (6)0.0210 (6)−0.0006 (5)0.0085 (5)−0.0008 (5)
N30.0182 (6)0.0214 (7)0.0220 (6)0.0020 (5)0.0048 (5)−0.0008 (5)
C10.0201 (7)0.0171 (7)0.0147 (6)−0.0012 (5)0.0057 (5)0.0009 (5)
C20.0176 (7)0.0223 (8)0.0194 (7)−0.0005 (6)0.0074 (6)0.0000 (6)
C30.0285 (8)0.0227 (8)0.0257 (8)−0.0008 (6)0.0150 (6)−0.0045 (6)
C40.0286 (8)0.0236 (8)0.0233 (7)−0.0072 (6)0.0108 (6)−0.0075 (6)
C50.0197 (7)0.0251 (8)0.0214 (7)−0.0047 (6)0.0051 (6)−0.0003 (6)
C60.0189 (7)0.0197 (7)0.0194 (7)−0.0005 (6)0.0056 (6)0.0008 (6)
C70.0180 (7)0.0175 (7)0.0164 (7)−0.0003 (5)0.0073 (5)0.0019 (5)
C80.0155 (6)0.0193 (7)0.0187 (7)0.0006 (5)0.0060 (5)0.0019 (5)
C90.0215 (7)0.0211 (7)0.0250 (7)0.0039 (6)0.0087 (6)−0.0015 (6)
C100.0191 (7)0.0237 (8)0.0266 (8)0.0058 (6)0.0065 (6)−0.0001 (6)

Geometric parameters (Å, °)

N1—C71.3689 (17)C3—H30.9500
N1—C11.4039 (17)C4—C51.384 (2)
N1—H10.891 (9)C4—H40.9500
N2—C81.3207 (18)C5—C61.393 (2)
N2—C91.3488 (17)C5—H50.9500
N3—C71.3335 (17)C6—H60.9500
N3—C101.3458 (19)C7—C81.4120 (19)
C1—C61.3944 (18)C8—H80.9500
C1—C21.3978 (19)C9—C101.378 (2)
C2—C31.381 (2)C9—H90.9500
C2—H20.9500C10—H100.9500
C3—C41.389 (2)
C7—N1—C1130.38 (12)C4—C5—H5119.5
C7—N1—H1113.3 (10)C6—C5—H5119.5
C1—N1—H1116.3 (10)C5—C6—C1119.56 (13)
C8—N2—C9116.75 (12)C5—C6—H6120.2
C7—N3—C10115.67 (12)C1—C6—H6120.2
C6—C1—C2119.09 (13)N3—C7—N1121.64 (12)
C6—C1—N1124.65 (13)N3—C7—C8121.03 (12)
C2—C1—N1116.25 (12)N1—C7—C8117.32 (12)
C3—C2—C1120.72 (13)N2—C8—C7122.44 (12)
C3—C2—H2119.6N2—C8—H8118.8
C1—C2—H2119.6C7—C8—H8118.8
C2—C3—C4120.26 (14)N2—C9—C10120.58 (13)
C2—C3—H3119.9N2—C9—H9119.7
C4—C3—H3119.9C10—C9—H9119.7
C5—C4—C3119.26 (14)N3—C10—C9123.53 (13)
C5—C4—H4120.4N3—C10—H10118.2
C3—C4—H4120.4C9—C10—H10118.2
C4—C5—C6121.08 (13)
C7—N1—C1—C6−12.7 (2)C10—N3—C7—N1−179.30 (12)
C7—N1—C1—C2168.41 (13)C10—N3—C7—C80.36 (19)
C6—C1—C2—C31.1 (2)C1—N1—C7—N3−4.2 (2)
N1—C1—C2—C3−179.89 (12)C1—N1—C7—C8176.09 (13)
C1—C2—C3—C40.5 (2)C9—N2—C8—C7−0.73 (19)
C2—C3—C4—C5−1.5 (2)N3—C7—C8—N20.3 (2)
C3—C4—C5—C60.9 (2)N1—C7—C8—N2−179.99 (12)
C4—C5—C6—C10.7 (2)C8—N2—C9—C100.4 (2)
C2—C1—C6—C5−1.7 (2)C7—N3—C10—C9−0.7 (2)
N1—C1—C6—C5179.40 (13)N2—C9—C10—N30.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (1)2.12 (1)2.977 (2)162 (1)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2121).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chao, M., Schempp, E. & Rosenstein, R. D. (1976). Acta Cryst. B32, 288–290.
  • Parsons, S., Wharton, S., McNab, H., Parkin, A. & Johnstone, R. (2006). Private communication (Deposition No. 610410). CCDC, Union Road, Cambridge, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography