PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2180.
Published online 2008 October 25. doi:  10.1107/S1600536808033990
PMCID: PMC2959665

5-(3-Methoxy­pheneth­yl)-4-(2-methoxy­phen­yl)-4H-1,2,4-triazol-3-ol

Abstract

In the mol­ecule of the title compound, C18H19N3O3, the triazole ring is oriented with respect to the 3-methoxy­phenyl and 2-methoxy­phenyl rings at dihedral angles of 11.79 (3) and 89.22 (3)°, respectively. The dihedral angle between the two benzene rings is 85.95 (3)°. In the crystal structure, inter­molecular O—H(...)N and C—H(...)O hydrogen bonds link the mol­ecules. There is a π–π contact between the triazole and 3-methoxy­phenyl rings [centroid–centroid distance = 3.916 (3) Å]. There is a π–π contact between the triazole and one of the 3-methoxy­phenyl rings [centroid–centroid distance = 3.916 (3) Å ]. C—H(...)π contacts are also found between the benzene ring and the methyl groups of their 3-methoxy-substituents.

Related literature

For general background, see: Demirbas et al. (2002 [triangle]); Holla et al. (1998 [triangle]); Kritsanida et al. (2002 [triangle]); Omar et al. (1986 [triangle]); Paulvannan et al. (2000 [triangle]); Turan-Zitouni et al. (1999 [triangle]). For related structures, see: Öztürk et al. (2004a [triangle],b [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2180-scheme1.jpg

Experimental

Crystal data

  • C18H19N3O3
  • M r = 325.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2180-efi1.jpg
  • a = 10.5030 (11) Å
  • b = 14.1172 (14) Å
  • c = 11.3226 (11) Å
  • β = 98.192 (2)°
  • V = 1661.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 (2) K
  • 0.32 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.902, T max = 1.000 (expected range = 0.884–0.980)
  • 9949 measured reflections
  • 4026 independent reflections
  • 3212 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.146
  • S = 1.02
  • 4026 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033990/hk2549sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033990/hk2549Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Substituted triazole derivatives display significant biological activities including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral (Kritsanida et al., 2002) activities. The biological activity is closely related to the structure, possibly being due to the presence of the —N—C—S unit (Omar et al., 1986). We are interested in the syntheses and biological activities of the aryloxyacetyl hydrazide derivatives and report herein the synthesis (Fig. 1) and crystal structure of the title compound.

In the molecule of the title compound (Fig. 2), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and they are comparable with those observed in related structures (Öztürk et al., 2004a, 2004b). In the triazole ring, the N3=C11 [1.3459 (17) Å] bond has double bond character. Rings A (C2-C7), B (N1/N2/N3/C10/C11) and C (C12-C17) are, of course, planar and the dihedral angles between them are A/B = 11.79 (3)°, A/C = 89.22 (3)° and B/C = 85.95 (3)°.

In the crystal structure, intramolecular C-H···O and intermolecular O-H···N and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 3), in which they may be effective in the stabilization of the structure. The π—π contact between the triazole and 3-methoxyphenyl rings, Cg1···Cg2i [symmetry code: (i) 1/2 + x, 1/2 - y, 1/2 + z, where Cg1 and Cg2 are the centroids of the rings B (N1/N2/N3/C10/C11) and A (C2-C7), respectively] may further stabilize the structure, with centroid-centroid distance of 3.916 (3) Å. There also exist C—H···π contacts (Table 1) between the phenyl rings and the methyl group and the 3-methoxyphenyl ring.

Experimental

The synthesis of the title compound (Fig. 1) was carried out by refluxing a solution of 4-(2-methoxyphenyl)-1-(3-(3-methoxyphenyl)propanoyl)semicarbazide (3.43 g, 10 mmol) in NaOH (2M) for 5 h. Single crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield; 71%, m.p. 454-455 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic and methylene H and x = 1.5 for all other H atoms.

Figures

Fig. 1.
The formation of the title compound.
Fig. 2.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 3.
A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H19N3O3F(000) = 688
Mr = 325.36Dx = 1.301 Mg m3
Monoclinic, P21/nMelting point: 454(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5030 (11) ÅCell parameters from 9949 reflections
b = 14.1172 (14) Åθ = 2.4–28.3°
c = 11.3226 (11) ŵ = 0.09 mm1
β = 98.192 (2)°T = 294 K
V = 1661.7 (3) Å3Block, yellow
Z = 40.32 × 0.24 × 0.22 mm

Data collection

Bruker SMART CCD diffractometer4026 independent reflections
Radiation source: fine-focus sealed tube3212 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→14
Tmin = 0.902, Tmax = 1.000k = −18→18
9949 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0854P)2 + 0.2782P] where P = (Fo2 + 2Fc2)/3
4026 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.34683 (13)0.50242 (9)0.80167 (14)0.0726 (4)
O20.76819 (12)0.19899 (8)0.72362 (9)0.0538 (3)
O30.99935 (9)0.12807 (7)0.96442 (12)0.0554 (3)
H31.04360.08000.97200.083*
N10.78261 (10)0.16861 (7)0.95758 (10)0.0367 (2)
N20.70357 (11)0.02988 (8)1.00087 (11)0.0439 (3)
N30.83555 (11)0.02434 (8)0.99977 (11)0.0439 (3)
C10.4774 (2)0.53003 (16)0.8160 (3)0.0908 (8)
H1A0.48290.59790.81330.136*
H1B0.51800.50330.75290.136*
H1C0.52000.50770.89150.136*
C20.31961 (15)0.40769 (11)0.80274 (13)0.0485 (3)
C30.18992 (15)0.38405 (12)0.79300 (14)0.0525 (4)
H3A0.12770.43130.78370.063*
C40.15417 (14)0.29079 (12)0.79721 (14)0.0512 (4)
H4A0.06750.27510.79090.061*
C50.24656 (13)0.21925 (11)0.81085 (13)0.0447 (3)
H5A0.22160.15630.81510.054*
C60.37517 (13)0.24212 (10)0.81805 (12)0.0401 (3)
C70.41200 (14)0.33670 (11)0.81434 (13)0.0463 (3)
H7A0.49860.35230.81960.056*
C80.47827 (14)0.16657 (11)0.83435 (14)0.0480 (3)
H8A0.54240.18070.78310.058*
H8B0.44000.10590.81000.058*
C90.54420 (13)0.15956 (10)0.96390 (13)0.0440 (3)
H9A0.55050.22250.99870.053*
H9B0.49130.12141.00900.053*
C100.67491 (12)0.11732 (9)0.97478 (11)0.0378 (3)
C110.88697 (13)0.10760 (9)0.97304 (12)0.0390 (3)
C120.79093 (12)0.26338 (9)0.91477 (12)0.0374 (3)
C130.80818 (19)0.33857 (12)0.99299 (15)0.0583 (4)
H13A0.81170.32841.07460.070*
C140.8202 (2)0.42943 (12)0.94939 (19)0.0751 (6)
H14A0.83230.48051.00170.090*
C150.8143 (2)0.44367 (11)0.82921 (18)0.0652 (5)
H15A0.82260.50480.80060.078*
C160.79629 (15)0.36961 (11)0.74987 (14)0.0504 (4)
H16A0.79180.38060.66840.061*
C170.78478 (12)0.27786 (9)0.79249 (12)0.0386 (3)
C180.7433 (3)0.21156 (16)0.59719 (16)0.0767 (6)
H18A0.73350.15080.55900.115*
H18B0.81400.24470.57080.115*
H18C0.66590.24770.57690.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0682 (8)0.0439 (6)0.1023 (10)0.0042 (5)0.0004 (7)0.0152 (6)
O20.0795 (8)0.0433 (5)0.0401 (5)0.0046 (5)0.0140 (5)0.0015 (4)
O30.0367 (5)0.0395 (5)0.0911 (8)0.0079 (4)0.0121 (5)0.0164 (5)
N10.0359 (5)0.0333 (5)0.0410 (5)0.0062 (4)0.0063 (4)0.0081 (4)
N20.0369 (6)0.0378 (6)0.0574 (7)0.0038 (5)0.0083 (5)0.0089 (5)
N30.0366 (6)0.0354 (6)0.0596 (7)0.0049 (4)0.0067 (5)0.0105 (5)
C10.0816 (15)0.0595 (11)0.1215 (19)−0.0176 (10)−0.0199 (13)0.0270 (12)
C20.0502 (8)0.0443 (7)0.0498 (8)0.0048 (6)0.0030 (6)0.0096 (6)
C30.0448 (8)0.0574 (9)0.0541 (8)0.0171 (7)0.0023 (6)0.0060 (7)
C40.0336 (7)0.0659 (10)0.0532 (8)0.0044 (6)0.0030 (6)0.0014 (7)
C50.0388 (7)0.0483 (7)0.0459 (7)−0.0014 (6)0.0020 (5)−0.0004 (6)
C60.0360 (6)0.0455 (7)0.0381 (6)0.0050 (5)0.0025 (5)−0.0013 (5)
C70.0360 (7)0.0498 (8)0.0527 (8)0.0015 (6)0.0055 (6)0.0075 (6)
C80.0408 (7)0.0482 (8)0.0536 (8)0.0086 (6)0.0022 (6)−0.0071 (6)
C90.0372 (7)0.0454 (7)0.0508 (7)0.0086 (5)0.0106 (6)0.0068 (6)
C100.0355 (6)0.0390 (6)0.0392 (6)0.0041 (5)0.0066 (5)0.0066 (5)
C110.0361 (6)0.0347 (6)0.0461 (7)0.0064 (5)0.0053 (5)0.0075 (5)
C120.0374 (6)0.0317 (6)0.0435 (7)0.0055 (5)0.0070 (5)0.0069 (5)
C130.0829 (12)0.0440 (8)0.0467 (8)0.0023 (8)0.0046 (8)−0.0013 (6)
C140.1112 (16)0.0392 (8)0.0729 (12)−0.0050 (9)0.0063 (11)−0.0075 (8)
C150.0784 (12)0.0353 (7)0.0836 (12)−0.0019 (7)0.0172 (9)0.0135 (8)
C160.0552 (8)0.0438 (7)0.0547 (8)0.0058 (6)0.0159 (7)0.0167 (6)
C170.0380 (6)0.0356 (6)0.0435 (7)0.0057 (5)0.0102 (5)0.0057 (5)
C180.1174 (18)0.0713 (12)0.0423 (9)0.0071 (12)0.0147 (10)0.0014 (8)

Geometric parameters (Å, °)

O3—H30.8200C9—H9B0.9700
N2—N31.3902 (16)C10—N21.2946 (17)
C1—O11.413 (3)C10—N11.3801 (17)
C1—H1A0.9600C11—O31.2325 (16)
C1—H1B0.9600C11—N31.3459 (17)
C1—H1C0.9600C11—N11.3854 (16)
C2—O11.3680 (19)C12—C131.378 (2)
C2—C71.388 (2)C12—C171.3919 (18)
C2—C31.391 (2)C12—N11.4299 (15)
C3—C41.372 (2)C13—C141.387 (2)
C3—H3A0.9300C13—H13A0.9300
C4—C51.394 (2)C14—C151.368 (3)
C4—H4A0.9300C14—H14A0.9300
C5—C61.3798 (19)C15—C161.374 (3)
C5—H5A0.9300C15—H15A0.9300
C6—C71.393 (2)C16—C171.3934 (19)
C6—C81.5123 (19)C16—H16A0.9300
C7—H7A0.9300C17—O21.3563 (17)
C8—C91.533 (2)C18—O21.429 (2)
C8—H8A0.9700C18—H18A0.9600
C8—H8B0.9700C18—H18B0.9600
C9—C101.4857 (18)C18—H18C0.9600
C9—H9A0.9700
C2—O1—C1118.00 (14)H8A—C8—H8B107.9
C17—O2—C18117.66 (13)C10—C9—C8113.03 (11)
C11—O3—H3109.5C10—C9—H9A109.0
C10—N1—C11107.79 (10)C8—C9—H9A109.0
C10—N1—C12129.03 (10)C10—C9—H9B109.0
C11—N1—C12122.62 (11)C8—C9—H9B109.0
C10—N2—N3104.56 (11)H9A—C9—H9B107.8
C11—N3—N2112.67 (11)N2—C10—N1111.34 (11)
O1—C1—H1A109.5N2—C10—C9125.71 (12)
O1—C1—H1B109.5N1—C10—C9122.95 (11)
H1A—C1—H1B109.5O3—C11—N3129.95 (12)
O1—C1—H1C109.5O3—C11—N1126.41 (12)
H1A—C1—H1C109.5N3—C11—N1103.64 (11)
H1B—C1—H1C109.5C13—C12—C17120.63 (12)
O1—C2—C7124.22 (15)C13—C12—N1120.78 (13)
O1—C2—C3115.93 (14)C17—C12—N1118.57 (12)
C7—C2—C3119.85 (14)C12—C13—C14119.61 (16)
C4—C3—C2119.81 (14)C12—C13—H13A120.2
C4—C3—H3A120.1C14—C13—H13A120.2
C2—C3—H3A120.1C15—C14—C13119.77 (17)
C3—C4—C5120.63 (14)C15—C14—H14A120.1
C3—C4—H4A119.7C13—C14—H14A120.1
C5—C4—H4A119.7C14—C15—C16121.40 (15)
C6—C5—C4119.82 (14)C14—C15—H15A119.3
C6—C5—H5A120.1C16—C15—H15A119.3
C4—C5—H5A120.1C15—C16—C17119.44 (15)
C5—C6—C7119.76 (13)C15—C16—H16A120.3
C5—C6—C8121.34 (13)C17—C16—H16A120.3
C7—C6—C8118.86 (13)O2—C17—C12115.80 (11)
C2—C7—C6120.11 (13)O2—C17—C16125.05 (13)
C2—C7—H7A119.9C12—C17—C16119.14 (13)
C6—C7—H7A119.9O2—C18—H18A109.5
C6—C8—C9112.34 (11)O2—C18—H18B109.5
C6—C8—H8A109.1H18A—C18—H18B109.5
C9—C8—H8A109.1O2—C18—H18C109.5
C6—C8—H8B109.1H18A—C18—H18C109.5
C9—C8—H8B109.1H18B—C18—H18C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.821.942.7569 (15)173
C5—H5A···O1ii0.932.593.406 (2)147
C8—H8A···O20.972.573.485 (2)157
C4—H4A···Cg3iii0.933.254.004 (3)140
C7—H7A···Cg30.933.164.067 (3)165
C18—H18A···Cg2iv0.963.033.400 (3)105
C18—H18B···Cg2iv0.963.083.400 (3)101

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x−1, y, z; (iv) x−1/2, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2549).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem 10, 3717–3723. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Il Farmaco, 53, 574–578. [PubMed]
  • Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco, 57, 253–257. [PubMed]
  • Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem 23, 1339–1341.
  • Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425–o427.
  • Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642–o644.
  • Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071–8076.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Il Farmaco, 54, 218–223. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography