PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2211–o2212.
Published online 2008 October 25. doi:  10.1107/S1600536808034624
PMCID: PMC2959664

4-Chloro-2-((1R)-1-{[(R)-(2-chloro­phen­yl)(cyclo­pent­yl)meth­yl]amino}eth­yl)phenol

Abstract

The title compound, C20H23Cl2NO, was prepared by condensation of (R)-1-(2-chloro­phen­yl)-1-cyclo­pentyl­methanamine with 1-(5-chloro-2-hydroxy­phen­yl)ethanone, resulting in the formation of a new chiral center. The structural analysis confirms the absolute configuration of the title compound and the formation of the (R,R) diastereoisomer. There is an intra­molecular O—H(...)N hydrogen bond which stabilizes the conformation of the mol­ecule. The mol­ecules are linked to each other through weak C—H(...)π inter­actions.

Related literature

For general background, see: Ager et al. (1996 [triangle]); Berrisford et al. (1995 [triangle]); Cimarelli & Palmieri (1998 [triangle]); Cimarelli et al. (2001 [triangle], 2002 [triangle]); Hayase et al. (1997 [triangle]); Nakano et al. (1997 [triangle]); Palmieri (1999 [triangle], 2000 [triangle]); Soai & Niwa (1992 [triangle]); Watanabe et al. (1991 [triangle]); Xu & Pu (2004 [triangle]); Yang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2211-scheme1.jpg

Experimental

Crystal data

  • C20H23Cl2NO
  • M r = 364.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2211-efi1.jpg
  • a = 11.286 (2) Å
  • b = 11.539 (2) Å
  • c = 14.740 (3) Å
  • V = 1919.5 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 298 (2) K
  • 0.42 × 0.29 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.869, T max = 0.941
  • 10145 measured reflections
  • 3573 independent reflections
  • 2761 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.113
  • S = 1.02
  • 3573 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1629 Friedel pairs
  • Flack parameter: 0.03 (8)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034624/dn2393sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034624/dn2393Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Natural Science Foundation of Shandong Province China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

supplementary crystallographic information

Comment

The synthesis of enantiopure amine alcohols with a variety of functionalities is an important subject of research because this class of compounds has found widespread application in biological systems showing pharmacological activity. These compounds are used as resolving agents, chiral bases and auxiliaries in asymmetric synthesis (Cimarelli et al.,2002), and most have been derived from new readily available natural products (Ager et al.,1996). Chiral aminophenols, which are similar to aminoalcohols, are important building blocks in organic synthesis, and have attracted increasing attention in recent years owing to their effects in asymmetric synthesis and asymmetric induction (Cimarelli et al.,2001; Palmieri, 1999, 2000; Xu & Pu, 2004; Berrisford et al., 1995; Cimarelli & Palmieri, 1998; Hayase et al., 1997; Nakano et al.,1997; Soai et al., 1992; Watanabe et al., 1991).

As part of our continuing studies of chiral aminophenols, we have established the molecular structure of the title compound which was intially synthesized to test its asymmetric catalytic activity. The compound has been prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(5-chloro-2-hydroxyphenyl)ethanone, resulting in the formation of a new chiral center as shown in Fig. 1.

The structural analyses confirms the absolute configuration of the title compound and the formation of the (R,R) diastereoisomer. There is an intramolecular O-H···N hydrogen bond which stabilizes the conformation of the molecule. The molecules are linked to each other through weak C-H···π interaction involving the C15-C20 benzene ring (Table 1).

Experimental

The title compound were prepared according to the procedure of Yang et al.(2005). (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine (0.9 mmol) and 1-(5-chloro-2-hydroxyphenyl)ethanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, NaBH4 (4.5 mmol) was added to the solution in THF/ethanol (1:1 v/v, 20 ml) and stirred at 273 K until the solution became colourless. The solvent was then removed under reduced pressure. Water (10 ml)was added to the residue and 1 N HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous Na2CO3 , then extracted with CHCl3, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (chloroform) to give a colourless solid (yield 83.5%). Crystals of (I) were grown from a n-hexane.

Refinement

All H atoms were included in calculated positions and treated as riding on their parent atoms, with N—H = 0.90 Å, O—H = 0.82 Å, aromatic C—H = 0.93 Å, methyl C—H =0.96 Å, methylene C—H =0.97 Å and methine C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C,N,O)or 1.5Ueq(methyl C).

Figures

Fig. 1.
Molecular view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. H bond is shown as dashed line.

Crystal data

C20H23Cl2NOF(000) = 768
Mr = 364.29Dx = 1.261 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2608 reflections
a = 11.286 (2) Åθ = 2.2–20.5°
b = 11.539 (2) ŵ = 0.34 mm1
c = 14.740 (3) ÅT = 298 K
V = 1919.5 (6) Å3Block, colourless
Z = 40.42 × 0.29 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer3573 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −13→13
Tmin = 0.869, Tmax = 0.941k = −13→11
10145 measured reflectionsl = −17→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3378P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3573 reflectionsΔρmax = 0.17 e Å3
219 parametersΔρmin = −0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1629 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4448 (2)0.9053 (2)0.71545 (19)0.0527 (7)
C20.5587 (2)0.9243 (2)0.68485 (16)0.0450 (6)
C30.5716 (3)1.0086 (2)0.61779 (19)0.0583 (7)
H30.64681.02420.59520.070*
C40.4774 (3)1.0688 (3)0.5843 (2)0.0662 (9)
H40.48911.12450.53950.079*
C50.3652 (3)1.0476 (3)0.6164 (2)0.0702 (9)
H50.30071.08860.59390.084*
C60.3501 (3)0.9649 (3)0.6822 (2)0.0679 (9)
H60.27460.94940.70430.082*
C70.6676 (2)0.8606 (2)0.71942 (18)0.0494 (7)
H70.64120.80680.76670.059*
C80.7239 (3)0.7890 (3)0.6445 (2)0.0597 (8)
H80.74960.84170.59630.072*
C90.8298 (3)0.7153 (3)0.6731 (3)0.0842 (11)
H9A0.90150.76160.67490.101*
H9B0.81680.68140.73240.101*
C100.8389 (4)0.6226 (4)0.6016 (3)0.1137 (16)
H10A0.89220.64670.55360.136*
H10B0.86870.55120.62780.136*
C110.7165 (4)0.6053 (4)0.5653 (3)0.1091 (15)
H11A0.71710.60910.49950.131*
H11B0.68630.53010.58340.131*
C120.6404 (3)0.6996 (3)0.6033 (2)0.0747 (10)
H12A0.58770.66880.64930.090*
H12B0.59300.73450.55570.090*
C130.7159 (3)1.0138 (3)0.83381 (19)0.0558 (7)
H130.64331.05290.81400.067*
C140.8106 (4)1.1051 (3)0.8523 (2)0.0835 (11)
H14A0.88281.06770.87050.125*
H14B0.78421.15570.89990.125*
H14C0.82451.14940.79830.125*
C150.6889 (3)0.9446 (3)0.91861 (19)0.0537 (7)
C160.6008 (3)0.9804 (3)0.9767 (2)0.0606 (8)
H160.55581.04520.96200.073*
C170.5781 (3)0.9215 (4)1.0566 (2)0.0757 (10)
C180.6416 (5)0.8248 (4)1.0777 (3)0.0969 (15)
H180.62540.78441.13080.116*
C190.7279 (4)0.7875 (3)1.0216 (3)0.0909 (14)
H190.77000.72071.03620.109*
C200.7551 (3)0.8472 (3)0.9425 (2)0.0669 (9)
Cl10.41737 (8)0.79949 (9)0.79694 (7)0.0876 (3)
Cl20.47184 (9)0.97355 (14)1.13076 (7)0.1212 (5)
N10.75723 (19)0.9378 (2)0.76056 (16)0.0590 (6)
O10.8465 (2)0.8094 (2)0.89205 (18)0.0974 (9)
H1A0.84710.84370.84330.146*
H10.78530.97840.71460.117*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0501 (16)0.0547 (17)0.0533 (16)−0.0074 (14)0.0004 (14)0.0055 (13)
C20.0518 (15)0.0445 (14)0.0386 (14)−0.0076 (13)−0.0041 (12)−0.0018 (12)
C30.0571 (17)0.0609 (18)0.0567 (17)−0.0135 (15)−0.0047 (15)0.0086 (15)
C40.088 (2)0.0532 (19)0.0577 (19)−0.0095 (18)−0.0138 (18)0.0100 (15)
C50.074 (2)0.063 (2)0.074 (2)0.0047 (18)−0.0227 (19)0.0004 (19)
C60.0472 (15)0.078 (2)0.079 (2)−0.0036 (16)−0.0035 (15)0.0018 (19)
C70.0468 (15)0.0528 (16)0.0485 (16)−0.0063 (13)−0.0026 (13)0.0001 (13)
C80.0586 (17)0.0647 (19)0.0558 (18)−0.0008 (15)−0.0021 (15)−0.0062 (15)
C90.0568 (19)0.093 (3)0.102 (3)0.013 (2)−0.0081 (18)−0.028 (2)
C100.088 (3)0.124 (3)0.129 (4)0.024 (3)−0.010 (3)−0.059 (3)
C110.098 (3)0.097 (3)0.132 (4)0.014 (3)−0.008 (3)−0.052 (3)
C120.068 (2)0.077 (2)0.079 (2)0.0014 (19)−0.0103 (18)−0.0250 (19)
C130.0533 (16)0.0598 (17)0.0544 (17)−0.0024 (15)−0.0074 (14)−0.0045 (14)
C140.099 (3)0.082 (2)0.069 (2)−0.028 (2)−0.001 (2)−0.0123 (19)
C150.0525 (16)0.0569 (17)0.0516 (16)−0.0085 (15)−0.0162 (14)−0.0034 (14)
C160.0534 (17)0.070 (2)0.0587 (19)−0.0094 (16)−0.0122 (15)0.0018 (16)
C170.070 (2)0.095 (3)0.062 (2)−0.035 (2)−0.0145 (18)0.000 (2)
C180.145 (4)0.086 (3)0.060 (2)−0.051 (3)−0.037 (3)0.013 (2)
C190.143 (4)0.059 (2)0.071 (3)−0.007 (2)−0.057 (3)0.001 (2)
C200.081 (2)0.059 (2)0.060 (2)0.0069 (18)−0.0332 (18)−0.0136 (16)
Cl10.0671 (5)0.1041 (7)0.0916 (6)−0.0106 (5)0.0140 (5)0.0452 (5)
Cl20.0834 (6)0.2043 (14)0.0759 (6)−0.0444 (8)0.0151 (5)−0.0046 (8)
N10.0475 (13)0.0749 (17)0.0547 (14)−0.0100 (13)−0.0024 (11)−0.0098 (13)
O10.1023 (19)0.102 (2)0.0875 (18)0.0454 (17)−0.0382 (15)−0.0257 (16)

Geometric parameters (Å, °)

C1—C61.363 (4)C11—H11A0.9700
C1—C21.379 (4)C11—H11B0.9700
C1—Cl11.740 (3)C12—H12A0.9700
C2—C31.394 (4)C12—H12B0.9700
C2—C71.520 (4)C13—N11.468 (3)
C3—C41.363 (4)C13—C151.515 (4)
C3—H30.9300C13—C141.525 (4)
C4—C51.373 (5)C13—H130.9800
C4—H40.9300C14—H14A0.9600
C5—C61.371 (5)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—C161.375 (4)
C7—N11.477 (3)C15—C201.394 (4)
C7—C81.518 (4)C16—C171.384 (4)
C7—H70.9800C16—H160.9300
C8—C121.524 (4)C17—C181.363 (6)
C8—C91.526 (4)C17—Cl21.730 (4)
C8—H80.9800C18—C191.348 (6)
C9—C101.504 (5)C18—H180.9300
C9—H9A0.9700C19—C201.389 (5)
C9—H9B0.9700C19—H190.9300
C10—C111.495 (6)C20—O11.344 (4)
C10—H10A0.9700N1—H10.8826
C10—H10B0.9700O1—H1A0.8200
C11—C121.495 (5)
C6—C1—C2122.2 (3)C10—C11—H11A110.2
C6—C1—Cl1117.6 (2)C12—C11—H11B110.2
C2—C1—Cl1120.2 (2)C10—C11—H11B110.2
C1—C2—C3116.1 (3)H11A—C11—H11B108.5
C1—C2—C7124.5 (2)C11—C12—C8106.7 (3)
C3—C2—C7119.4 (2)C11—C12—H12A110.4
C4—C3—C2122.1 (3)C8—C12—H12A110.4
C4—C3—H3118.9C11—C12—H12B110.4
C2—C3—H3118.9C8—C12—H12B110.4
C3—C4—C5120.2 (3)H12A—C12—H12B108.6
C3—C4—H4119.9N1—C13—C15110.8 (2)
C5—C4—H4119.9N1—C13—C14108.8 (2)
C6—C5—C4118.9 (3)C15—C13—C14110.9 (2)
C6—C5—H5120.6N1—C13—H13108.7
C4—C5—H5120.6C15—C13—H13108.7
C1—C6—C5120.5 (3)C14—C13—H13108.7
C1—C6—H6119.7C13—C14—H14A109.5
C5—C6—H6119.7C13—C14—H14B109.5
N1—C7—C8109.9 (2)H14A—C14—H14B109.5
N1—C7—C2113.6 (2)C13—C14—H14C109.5
C8—C7—C2111.0 (2)H14A—C14—H14C109.5
N1—C7—H7107.4H14B—C14—H14C109.5
C8—C7—H7107.4C16—C15—C20118.2 (3)
C2—C7—H7107.4C16—C15—C13120.0 (3)
C7—C8—C12113.6 (2)C20—C15—C13121.7 (3)
C7—C8—C9115.5 (3)C15—C16—C17121.1 (3)
C12—C8—C9102.5 (3)C15—C16—H16119.4
C7—C8—H8108.3C17—C16—H16119.4
C12—C8—H8108.3C18—C17—C16119.9 (4)
C9—C8—H8108.3C18—C17—Cl2120.3 (3)
C10—C9—C8104.9 (3)C16—C17—Cl2119.8 (3)
C10—C9—H9A110.8C19—C18—C17120.2 (4)
C8—C9—H9A110.8C19—C18—H18119.9
C10—C9—H9B110.8C17—C18—H18119.9
C8—C9—H9B110.8C18—C19—C20121.1 (4)
H9A—C9—H9B108.8C18—C19—H19119.5
C11—C10—C9106.4 (3)C20—C19—H19119.5
C11—C10—H10A110.4O1—C20—C19118.2 (3)
C9—C10—H10A110.4O1—C20—C15122.2 (3)
C11—C10—H10B110.4C19—C20—C15119.5 (4)
C9—C10—H10B110.4C13—N1—C7116.4 (2)
H10A—C10—H10B108.6C13—N1—H1111.2
C12—C11—C10107.4 (3)C7—N1—H1104.5
C12—C11—H11A110.2C20—O1—H1A109.5
C6—C1—C2—C30.2 (4)C7—C8—C12—C11−154.8 (3)
Cl1—C1—C2—C3178.3 (2)C9—C8—C12—C11−29.4 (4)
C6—C1—C2—C7179.9 (3)N1—C13—C15—C16−148.4 (2)
Cl1—C1—C2—C7−1.9 (4)C14—C13—C15—C1690.6 (3)
C1—C2—C3—C40.0 (4)N1—C13—C15—C2034.8 (4)
C7—C2—C3—C4−179.8 (3)C14—C13—C15—C20−86.2 (3)
C2—C3—C4—C50.0 (5)C20—C15—C16—C17−0.1 (4)
C3—C4—C5—C6−0.2 (5)C13—C15—C16—C17−177.1 (3)
C2—C1—C6—C5−0.3 (5)C15—C16—C17—C18−1.6 (5)
Cl1—C1—C6—C5−178.5 (2)C15—C16—C17—Cl2176.6 (2)
C4—C5—C6—C10.3 (5)C16—C17—C18—C191.2 (5)
C1—C2—C7—N1−119.6 (3)Cl2—C17—C18—C19−177.0 (3)
C3—C2—C7—N160.2 (3)C17—C18—C19—C201.0 (6)
C1—C2—C7—C8116.1 (3)C18—C19—C20—O1176.3 (3)
C3—C2—C7—C8−64.2 (3)C18—C19—C20—C15−2.7 (5)
N1—C7—C8—C12175.2 (3)C16—C15—C20—O1−176.8 (3)
C2—C7—C8—C12−58.3 (3)C13—C15—C20—O10.1 (4)
N1—C7—C8—C957.2 (3)C16—C15—C20—C192.2 (4)
C2—C7—C8—C9−176.4 (3)C13—C15—C20—C19179.1 (3)
C7—C8—C9—C10158.9 (3)C15—C13—N1—C770.8 (3)
C12—C8—C9—C1034.8 (4)C14—C13—N1—C7−166.9 (3)
C8—C9—C10—C11−27.7 (5)C8—C7—N1—C13179.4 (2)
C9—C10—C11—C129.1 (5)C2—C7—N1—C1354.4 (3)
C10—C11—C12—C813.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.922.639 (3)146
C3—H3···Cg1i0.932.763.661 (3)164

Symmetry codes: (i) −x+3/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2393).

References

  • Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev.96, 835–875. [PubMed]
  • Berrisford, D. J., Bolm, C. & Sharpless, K. B. (1995). Angew. Chem. Int. Ed. Engl.34, 1059–1070.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cimarelli, C., Mazzanti, A., Palmieri, G. & Volpini, E. (2001). J. Org. Chem.66, 4759–4765. [PubMed]
  • Cimarelli, C. & Palmieri, G. (1998). Tetrahedron, 54, 15711–15720.
  • Cimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011–2018.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hayase, T., Sugiyama, T., Suzuki, M., Shibata, T. & Soai, K. (1997). J. Fluorine Chem.84, 1–5.
  • Nakano, H., Kumagai, N., Matsuzaki, H., Kabuto, C. & Hongo, V. (1997). Tetrahedron Asymmetry, 8, 1391–1401.
  • Palmieri, G. (1999). Eur. J. Org. Chem. pp. 805–811.
  • Palmieri, G. (2000). Tetrahedron Asymmetry, 11, 3361–3373.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soai, K. & Niwa, S. (1992). Chem. Rev.92, 833–856.
  • Watanabe, V., Araki, V. & Butsugan, V. (1991). J. Org. Chem.56, 2218–2224.
  • Xu, M. H. & Pu, L. (2004). Org. Lett 4, 4555-4557. [PubMed]
  • Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262–o264. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography