PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2120.
Published online 2008 October 15. doi:  10.1107/S1600536808033205
PMCID: PMC2959661

(Anthracen-9-yl)(piperidin-1-yl)­methanone

Abstract

The title compound, C20H19NO, is a substructure of CP-640186, a potent inhibitor of mammalian acetyl-coenzyme A carboxyl­ases. In the crystal structure, the amide group forms a dihedral angle of 87.0 (1)° with the plane of the anthracene unit and the piperidine ring adopts a chair conformation. Mol­ecules are arranged into layers parallel to (100) and adjacent anthracene units within layers form dihedral angles of 13.2 (1)°. C—H(...)O inter­actions from the piperidine rings to the C=O group of the amide are observed between layers.

Related literature

For further information regarding CP-640186, see: Harwood et al. (2003 [triangle]); Zhang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2120-scheme1.jpg

Experimental

Crystal data

  • C20H19NO
  • M r = 289.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2120-efi1.jpg
  • a = 26.393 (5) Å
  • b = 7.3950 (15) Å
  • c = 18.213 (4) Å
  • β = 120.29 (3)°
  • V = 3069.5 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.977, T max = 0.992
  • 2828 measured reflections
  • 2762 independent reflections
  • 1678 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.278
  • S = 1.09
  • 2762 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033205/bi2300sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033205/bi2300Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Natural Science Foundation of Jiangsu Province (grant No. BK2007132).

supplementary crystallographic information

Comment

Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to affect favourably the multitude of cardiovascular risk factors associated with the metabolic syndrome. Recent findings reported by Pfizer researchers show that the isozyme-nonselective ACC inhibitor CP-640186 inhibits both the lipogenic tissue isozyme (ACC1) and the oxidative tissue isozyme (ACC2) (Harwood et al., 2003). The title compound is a sub-structure of CP-640186 (see Zhang et al., 2004).

Experimental

A mixture of 9-carbonyl anthracene (1 mmol) and piperidine (1.2 mmol) with 1.5 mmol DCC (DCC = N,N'-dicyclohexyl-carbodiimide) was stirred in 5 ml CH2Cl2 at room temperature for 1 h to yield the title compound. Crystals were obtained from acetone/petroleum ether.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids shown at 30% probability for non-H atoms.

Crystal data

C20H19NOF(000) = 1232
Mr = 289.36Dx = 1.252 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 781 reflections
a = 26.393 (5) Åθ = 2.4–28.0°
b = 7.3950 (15) ŵ = 0.08 mm1
c = 18.213 (4) ÅT = 293 K
β = 120.29 (3)°Block, yellow
V = 3069.5 (14) Å30.30 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEX CCD diffractometer2762 independent reflections
Radiation source: fine-focus sealed tube1678 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −31→27
Tmin = 0.977, Tmax = 0.992k = 0→8
2828 measured reflectionsl = 0→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.1523P)2 + 2.2222P] where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.83354 (17)0.1537 (5)0.6866 (3)0.0733 (11)
H1A0.87090.15890.69360.088*
C20.78453 (17)0.1309 (5)0.6048 (3)0.0680 (10)
H2A0.78960.12540.55790.082*
C30.72989 (15)0.1169 (5)0.5938 (2)0.0577 (9)
H3A0.69800.09930.53940.069*
C40.72079 (13)0.1286 (4)0.66384 (19)0.0472 (8)
C50.77079 (14)0.1544 (4)0.7464 (2)0.0504 (8)
C60.82684 (15)0.1679 (5)0.7541 (2)0.0611 (9)
H6A0.85960.18710.80740.073*
C70.66500 (13)0.1159 (4)0.65502 (19)0.0480 (8)
C80.65705 (14)0.1315 (4)0.7257 (2)0.0478 (8)
C90.70746 (15)0.1503 (4)0.8081 (2)0.0534 (8)
C100.76293 (14)0.1644 (4)0.8162 (2)0.0538 (9)
H10A0.79560.18090.86990.065*
C110.60162 (16)0.1229 (5)0.7191 (3)0.0626 (10)
H11A0.56820.10980.66580.075*
C120.59630 (19)0.1335 (5)0.7889 (3)0.0751 (12)
H12A0.55910.13080.78260.090*
C130.6455 (2)0.1485 (5)0.8706 (3)0.0718 (11)
H13A0.64090.15350.91800.086*
C140.69916 (19)0.1556 (5)0.8799 (2)0.0677 (10)
H14A0.73170.16420.93430.081*
C150.61267 (14)0.0678 (5)0.5689 (2)0.0524 (8)
C160.59033 (17)0.3956 (5)0.5392 (2)0.0693 (11)
H16A0.62710.41080.59220.083*
H16B0.55930.44630.54650.083*
C170.5933 (2)0.4948 (6)0.4705 (3)0.0870 (13)
H17A0.62740.45490.46800.104*
H17B0.59750.62320.48310.104*
C180.5372 (2)0.4617 (6)0.3833 (3)0.0848 (13)
H18A0.50360.51640.38280.102*
H18B0.54160.51660.33840.102*
C190.52736 (19)0.2577 (7)0.3679 (2)0.0861 (13)
H19A0.49050.23720.31560.103*
H19B0.55850.20720.36070.103*
C200.52607 (17)0.1630 (6)0.4382 (2)0.0798 (12)
H20A0.49170.20080.44060.096*
H20B0.52330.03370.42810.096*
N10.57930 (13)0.2033 (4)0.51987 (17)0.0652 (9)
O10.60244 (11)−0.0901 (3)0.54889 (16)0.0754 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.058 (2)0.078 (3)0.090 (3)0.0004 (18)0.042 (2)0.008 (2)
C20.076 (3)0.071 (2)0.071 (2)0.0052 (19)0.048 (2)0.0061 (19)
C30.059 (2)0.063 (2)0.0532 (19)0.0000 (16)0.0293 (17)0.0003 (15)
C40.0487 (18)0.0408 (16)0.0483 (18)0.0024 (13)0.0216 (15)0.0022 (13)
C50.0448 (17)0.0440 (17)0.0513 (18)0.0004 (13)0.0160 (15)0.0049 (14)
C60.0438 (19)0.060 (2)0.068 (2)0.0006 (15)0.0189 (17)−0.0010 (17)
C70.0475 (18)0.0449 (18)0.0438 (17)0.0006 (13)0.0173 (14)0.0000 (13)
C80.0527 (19)0.0420 (17)0.0519 (18)−0.0014 (13)0.0286 (16)0.0008 (13)
C90.059 (2)0.0469 (18)0.0481 (18)0.0035 (15)0.0229 (16)−0.0049 (14)
C100.0507 (19)0.0506 (19)0.0459 (18)0.0015 (14)0.0139 (15)0.0006 (14)
C110.059 (2)0.062 (2)0.071 (2)−0.0058 (16)0.0350 (19)−0.0031 (17)
C120.078 (3)0.077 (3)0.093 (3)−0.001 (2)0.060 (3)−0.002 (2)
C130.099 (3)0.070 (2)0.068 (2)0.011 (2)0.058 (2)0.0023 (19)
C140.084 (3)0.068 (2)0.054 (2)−0.0005 (19)0.036 (2)−0.0040 (17)
C150.0497 (18)0.057 (2)0.0485 (18)−0.0007 (15)0.0238 (15)−0.0044 (16)
C160.070 (2)0.066 (2)0.057 (2)0.0051 (18)0.0207 (19)−0.0063 (18)
C170.112 (4)0.063 (3)0.085 (3)0.003 (2)0.049 (3)0.003 (2)
C180.110 (3)0.076 (3)0.064 (2)0.013 (2)0.040 (2)0.016 (2)
C190.086 (3)0.103 (4)0.050 (2)−0.007 (2)0.020 (2)−0.003 (2)
C200.060 (2)0.092 (3)0.058 (2)−0.012 (2)0.0075 (19)0.003 (2)
N10.0575 (18)0.0608 (19)0.0531 (17)−0.0090 (14)0.0100 (14)0.0008 (14)
O10.0812 (19)0.0499 (15)0.0646 (16)−0.0093 (12)0.0144 (14)−0.0150 (12)

Geometric parameters (Å, °)

C1—C61.333 (5)C12—H12A0.930
C1—C21.406 (5)C13—C141.339 (6)
C1—H1A0.930C13—H13A0.930
C2—C31.356 (5)C14—H14A0.930
C2—H2A0.930C15—O11.213 (4)
C3—C41.415 (4)C15—N11.336 (4)
C3—H3A0.930C16—N11.458 (5)
C4—C71.401 (4)C16—C171.486 (6)
C4—C51.427 (4)C16—H16A0.970
C5—C101.389 (5)C16—H16B0.970
C5—C61.417 (5)C17—C181.549 (6)
C6—H6A0.930C17—H17A0.970
C7—C81.409 (4)C17—H17B0.970
C7—C151.519 (4)C18—C191.532 (6)
C8—C111.407 (5)C18—H18A0.970
C8—C91.424 (5)C18—H18B0.970
C9—C101.399 (5)C19—C201.476 (6)
C9—C141.433 (5)C19—H19A0.970
C10—H10A0.930C19—H19B0.970
C11—C121.351 (5)C20—N11.472 (4)
C11—H11A0.930C20—H20A0.970
C12—C131.401 (6)C20—H20B0.970
C6—C1—C2120.5 (3)C13—C14—C9121.5 (4)
C6—C1—H1A119.7C13—C14—H14A119.3
C2—C1—H1A119.7C9—C14—H14A119.3
C3—C2—C1120.5 (4)O1—C15—N1123.3 (3)
C3—C2—H2A119.8O1—C15—C7119.0 (3)
C1—C2—H2A119.8N1—C15—C7117.7 (3)
C2—C3—C4120.9 (3)N1—C16—C17111.5 (3)
C2—C3—H3A119.5N1—C16—H16A109.3
C4—C3—H3A119.5C17—C16—H16A109.3
C7—C4—C3122.6 (3)N1—C16—H16B109.3
C7—C4—C5119.3 (3)C17—C16—H16B109.3
C3—C4—C5118.1 (3)H16A—C16—H16B108.0
C10—C5—C6122.4 (3)C16—C17—C18110.9 (4)
C10—C5—C4119.0 (3)C16—C17—H17A109.5
C6—C5—C4118.6 (3)C18—C17—H17A109.5
C1—C6—C5121.4 (3)C16—C17—H17B109.5
C1—C6—H6A119.3C18—C17—H17B109.5
C5—C6—H6A119.3H17A—C17—H17B108.0
C4—C7—C8121.4 (3)C19—C18—C17109.2 (3)
C4—C7—C15119.3 (3)C19—C18—H18A109.8
C8—C7—C15119.0 (3)C17—C18—H18A109.8
C11—C8—C7123.0 (3)C19—C18—H18B109.8
C11—C8—C9118.2 (3)C17—C18—H18B109.8
C7—C8—C9118.7 (3)H18A—C18—H18B108.3
C10—C9—C8119.4 (3)C20—C19—C18112.6 (4)
C10—C9—C14122.4 (3)C20—C19—H19A109.1
C8—C9—C14118.2 (3)C18—C19—H19A109.1
C5—C10—C9122.0 (3)C20—C19—H19B109.1
C5—C10—H10A119.0C18—C19—H19B109.1
C9—C10—H10A119.0H19A—C19—H19B107.8
C12—C11—C8120.9 (4)N1—C20—C19110.7 (3)
C12—C11—H11A119.5N1—C20—H20A109.5
C8—C11—H11A119.5C19—C20—H20A109.5
C11—C12—C13121.6 (4)N1—C20—H20B109.5
C11—C12—H12A119.2C19—C20—H20B109.5
C13—C12—H12A119.2H20A—C20—H20B108.1
C14—C13—C12119.5 (4)C15—N1—C16125.9 (3)
C14—C13—H13A120.3C15—N1—C20119.7 (3)
C12—C13—H13A120.3C16—N1—C20114.4 (3)
C6—C1—C2—C3−2.2 (6)C8—C9—C10—C5−2.3 (5)
C1—C2—C3—C41.3 (5)C14—C9—C10—C5178.3 (3)
C2—C3—C4—C7179.6 (3)C7—C8—C11—C12178.1 (3)
C2—C3—C4—C5−0.4 (5)C9—C8—C11—C120.5 (5)
C7—C4—C5—C100.7 (4)C8—C11—C12—C13−1.7 (6)
C3—C4—C5—C10−179.3 (3)C11—C12—C13—C141.1 (6)
C7—C4—C5—C6−179.7 (3)C12—C13—C14—C90.7 (6)
C3—C4—C5—C60.3 (4)C10—C9—C14—C13177.5 (3)
C2—C1—C6—C52.2 (6)C8—C9—C14—C13−1.9 (5)
C10—C5—C6—C1178.4 (3)C4—C7—C15—O184.2 (4)
C4—C5—C6—C1−1.2 (5)C8—C7—C15—O1−90.4 (4)
C3—C4—C7—C8−178.8 (3)C4—C7—C15—N1−97.4 (4)
C5—C4—C7—C81.2 (4)C8—C7—C15—N188.0 (4)
C3—C4—C7—C156.7 (5)N1—C16—C17—C1854.6 (5)
C5—C4—C7—C15−173.3 (3)C16—C17—C18—C19−53.5 (5)
C4—C7—C8—C11178.8 (3)C17—C18—C19—C2053.9 (5)
C15—C7—C8—C11−6.7 (5)C18—C19—C20—N1−54.1 (5)
C4—C7—C8—C9−3.6 (4)O1—C15—N1—C16−177.9 (4)
C15—C7—C8—C9170.9 (3)C7—C15—N1—C163.7 (5)
C11—C8—C9—C10−178.2 (3)O1—C15—N1—C202.1 (5)
C7—C8—C9—C104.1 (4)C7—C15—N1—C20−176.3 (3)
C11—C8—C9—C141.3 (4)C17—C16—N1—C15124.0 (4)
C7—C8—C9—C14−176.5 (3)C17—C16—N1—C20−56.0 (5)
C6—C5—C10—C9−179.8 (3)C19—C20—N1—C15−125.0 (4)
C4—C5—C10—C9−0.1 (5)C19—C20—N1—C1655.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.972.413.342 (5)162
C20—H20A···O1ii0.972.713.557 (5)146

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2300).

References

  • Bruker (2000). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harwood, H. J., Petras, S. F., Shelly, L. D., Zaccaro, L. M., Perry, D. A., Makowski, M. R., Hargrove, D. M., Martin, K. A., Tracey, W. R., Chapman, J. G., Magee, W. P., Dalvie, D. K., Soliman, V. F., Martin, W. H., Mularski, C. J. & Eisenbeis, S. A. (2003). J. Biol. Chem.278, 37099–37111. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, H.-L., Tweel, B., Li, J. & Tong, L. (2004). Structure, 12, 1683–1691. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography