PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2152.
Published online 2008 October 22. doi:  10.1107/S1600536808032650
PMCID: PMC2959655

rac-Ethyl 3-(3-bromo-2-thien­yl)-2-oxo-6-(4-propoxyphen­yl)cyclo­hex-3-ene-1-carboxyl­ate

Abstract

The racemic title compound, C22H23BrO4S, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the thio­phene and phenyl rings are 71.64 (17) and 73.41 (17)°.

Related literature

For general background, see: House (1972 [triangle]); Tabba et al. (1995 [triangle]); Dimmock et al. (1999 [triangle]); Dhar (1981 [triangle]); Padmavathi et al. (1999 [triangle], 2000 [triangle], 2001a [triangle],b [triangle]). For related structures, see: Fischer et al. (2007a [triangle],b [triangle], 2008 [triangle]); Yao et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2152-scheme1.jpg

Experimental

Crystal data

  • C22H23BrO4S
  • M r = 463.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2152-efi1.jpg
  • a = 8.809 (3) Å
  • b = 11.878 (2) Å
  • c = 20.178 (7) Å
  • α = 92.66 (2)°
  • β = 94.61 (2)°
  • γ = 90.16 (2)°
  • V = 2102.2 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.08 mm−1
  • T = 299 K
  • 0.38 × 0.31 × 0.11 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997 [triangle]);T min = 0.613, T max = 0.881
  • 31851 measured reflections
  • 7652 independent reflections
  • 4630 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.136
  • S = 1.17
  • 7652 reflections
  • 506 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: DIRAX (Duisenberg, 1992 [triangle]); data reduction: EVALCCD (Duisenberg et al., 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032650/kp2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032650/kp2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MTS thanks the University of Mysore for research facilities. The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

supplementary crystallographic information

Comment

Chalcones and the corresponding heterocyclic analogues are valuable intermediates in organic synthesis (Dhar, 1981) and exhibit a multitude of biological activities (Dimmock et al. 1999). From a chemical point of view, an important feature of chalcones and their heteroanalogues is the ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts (House, 1972). This type of reaction may be exploited with the view of obtaining highly functionalized cyclohexene derivatives (Tabba et al.,1995) but is more commonly used for the preparation of 3,5-diaryl-6-carbethoxycyclohexanones via Michael addition of ethylacetoacetate. The mentioned cyclohexenones are efficient synthons in building spiranic compounds (Padmavathi et al.,2001) or intermediates in the synthesis of benzisoxazoles or carbazolederivatives (Padmavathi et al., 1999, 2000, 2001a,b). In view of the importance of these derivatives, a new derivative rac-ethyl-3-(3-bromo-2-thienyl)-6-(4-propoxyphenyl)-2-oxocyclohex-3-ene-1-carboxylate, C22H23BrO4S was prepared and the crystal structure is reported here.

The compound is prepared by the cyclocondensation of ethyl acetoacetate with chalcone which leads to the generation of two chiral centers at C1 and C6 in the structure of cyclohexanone (I). As the reaction is not stereoselective, both configurations of the chiral carbon atoms are expected to be obtained in the synthesiszed cyclohexanone(I), which would result in a mixture of diastereomers. No attempt to separate the diastereomeric I has been undertaken and the crystals were grown from the mixture after recrystallization.

Experimental

(2E)-1-(3-Bromo-2-thienyl)-3-(4-propoxyphenyl)prop-2-en-1-one(1) (1.76 g, 5 mmol) and ethyl acetoacetate (2) (0.65 g, 5 mmol) were refluxed for 2 h in 15 mL ethanol in presence of 0.8 mL 10% NaOH. The reaction mixture was cooled to room temperature and the reaction mass was filtered and recrystallized using methanol. X-ray quality crystals were grown from acetone.Yield = 67%; mp 349–351 K. CHS Calculated: 57.02, 5.00, 6.92; Observed: 56.89,4.81, 6.80.

Refinement

Hydrogen atoms were placed at calculated positions and refined riding on the respective carrier atom. Attempts to improve the structure model using a split position for C43 and C44 resulted in an unstable refinement. Attempts to acquire data at low temperature resulted in severe deterioration of the crystal quality.

Figures

Fig. 1.
: The two molecules in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C22H23BrO4SZ = 4
Mr = 463.40F(000) = 952
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.809 (3) ÅCell parameters from 26 reflections
b = 11.878 (2) Åθ = 5.7–16.4°
c = 20.178 (7) ŵ = 2.08 mm1
α = 92.66 (2)°T = 299 K
β = 94.61 (2)°Plate, colourless
γ = 90.16 (2)°0.38 × 0.31 × 0.11 mm
V = 2102.2 (11) Å3

Data collection

Bruker–Nonius KappaCCD diffractometer4630 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
[var phi] and ω scansθmax = 25.5°, θmin = 4.6°
Absorption correction: numerical (program? reference?)h = −10→10
Tmin = 0.613, Tmax = 0.881k = −13→14
31851 measured reflectionsl = −24→23
7652 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.136w = 1/[σ2(Fo2) + 5.8P] where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
7652 reflectionsΔρmax = 0.45 e Å3
506 parametersΔρmin = −0.52 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.00872 (8)0.74502 (5)1.07626 (3)0.0570 (2)
Br20.51193 (8)0.76585 (5)1.07551 (3)0.0590 (2)
S10.69191 (18)0.46070 (13)1.03375 (8)0.0518 (4)
S20.19207 (18)1.04063 (14)1.03454 (8)0.0529 (4)
C10.7253 (7)0.4941 (5)1.1156 (3)0.0542 (16)
C20.8199 (7)0.5836 (5)1.1279 (3)0.0474 (14)
C30.8687 (6)0.6238 (4)1.0689 (3)0.0395 (13)
C40.8093 (6)0.5679 (4)1.0113 (3)0.0387 (13)
C50.8252 (6)0.5818 (4)0.9409 (3)0.0361 (12)
C60.9291 (7)0.6506 (4)0.9193 (3)0.0446 (14)
C70.9453 (7)0.6673 (4)0.8494 (3)0.0469 (14)
C80.8412 (6)0.6015 (4)0.7975 (3)0.0384 (12)
C90.7790 (6)0.4937 (4)0.8233 (3)0.0379 (12)
C100.7154 (6)0.5177 (4)0.8910 (3)0.0404 (13)
C110.6635 (6)0.4335 (4)0.7750 (3)0.0393 (13)
C120.5401 (7)0.4886 (5)0.7429 (3)0.0495 (15)
C130.4415 (8)0.4320 (5)0.6973 (3)0.0598 (17)
C140.4589 (7)0.3188 (5)0.6817 (3)0.0516 (15)
C150.5740 (7)0.2611 (5)0.7149 (3)0.0510 (15)
C160.6750 (7)0.3199 (4)0.7606 (3)0.0463 (14)
C170.3718 (9)0.1587 (6)0.6120 (4)0.072 (2)
C180.2557 (10)0.1339 (7)0.5533 (4)0.088 (3)
C190.2534 (13)0.0159 (9)0.5288 (6)0.144 (5)
C200.9318 (7)0.5792 (5)0.7381 (3)0.0495 (15)
C211.0231 (10)0.6541 (7)0.6429 (4)0.090 (3)
C220.9822 (14)0.7411 (8)0.5968 (5)0.136 (4)
C230.2240 (7)1.0186 (6)1.1170 (3)0.0553 (16)
C240.3224 (7)0.9319 (5)1.1279 (3)0.0495 (15)
C250.3712 (6)0.8839 (4)1.0692 (3)0.0399 (13)
C260.3119 (6)0.9313 (4)1.0117 (3)0.0376 (12)
C270.4301 (6)0.8377 (4)0.9187 (3)0.0450 (14)
C280.4458 (7)0.8132 (4)0.8486 (3)0.0478 (14)
C290.3417 (6)0.8698 (4)0.7973 (3)0.0399 (13)
C300.2803 (6)0.9815 (4)0.8246 (3)0.0396 (13)
C310.2186 (6)0.9668 (4)0.8918 (3)0.0412 (13)
C320.3274 (6)0.9096 (4)0.9413 (3)0.0386 (13)
C330.1648 (6)1.0349 (4)0.7757 (3)0.0395 (13)
C340.1797 (7)1.1466 (4)0.7618 (3)0.0457 (14)
C350.0795 (7)1.1981 (5)0.7162 (3)0.0513 (15)
C36−0.0374 (7)1.1362 (5)0.6834 (3)0.0477 (14)
C37−0.0588 (7)1.0261 (5)0.6991 (3)0.0561 (16)
C380.0409 (7)0.9759 (5)0.7438 (3)0.0505 (15)
C39−0.1223 (8)1.2903 (5)0.6170 (3)0.0592 (17)
C40−0.2396 (9)1.3122 (6)0.5615 (4)0.073 (2)
C41−0.2367 (12)1.4334 (7)0.5416 (5)0.112 (3)
C420.4294 (7)0.8853 (5)0.7374 (3)0.0518 (15)
C430.5140 (15)0.7996 (8)0.6391 (5)0.142 (5)
C440.5026 (15)0.7049 (9)0.6013 (5)0.146 (5)
O11.0389 (6)0.7333 (4)0.8325 (2)0.0744 (14)
O20.3581 (5)0.2734 (3)0.6319 (2)0.0654 (12)
O31.0136 (5)0.5001 (4)0.7321 (2)0.0650 (12)
O40.9151 (6)0.6605 (4)0.6946 (2)0.0655 (12)
O50.5407 (6)0.7450 (4)0.8317 (2)0.0753 (14)
O6−0.1381 (5)1.1766 (3)0.6339 (2)0.0608 (12)
O70.5113 (6)0.9633 (4)0.7307 (2)0.0740 (14)
O80.4101 (7)0.7991 (4)0.6931 (2)0.0820 (16)
H10.68320.45521.14870.065*
H20.84950.61451.17020.057*
H60.99470.68990.95060.054*
H80.75510.64970.78410.046*
H90.86510.44250.83060.046*
H10A0.62250.56090.88450.048*
H10B0.68930.44660.90920.048*
H120.52510.56480.75260.059*
H130.36100.47060.67640.072*
H150.58430.18380.70710.061*
H160.75350.28040.78250.056*
H17A0.35220.11140.64840.087*
H17B0.47380.14350.59920.087*
H18A0.15520.15400.56630.105*
H18B0.27820.18100.51730.105*
H19A0.3530−0.00520.51670.173*
H19B0.18150.00640.49060.173*
H19C0.2243−0.03100.56320.173*
H21A1.12630.66630.66250.108*
H21B1.01750.58050.61990.108*
H22A0.88670.72200.57260.163*
H22B1.05960.74690.56620.163*
H22C0.97330.81200.62100.163*
H230.18031.06091.15040.066*
H240.35300.90721.16990.059*
H270.49510.80180.94940.054*
H290.25530.81930.78400.048*
H300.36691.03370.83200.048*
H31A0.12530.92280.88510.049*
H31B0.19301.04040.91050.049*
H340.25911.18880.78370.055*
H350.09211.27370.70770.062*
H37−0.14200.98550.67910.067*
H380.02580.90090.75310.061*
H39A−0.02111.30350.60320.071*
H39B−0.13741.34040.65530.071*
H40A−0.33971.29470.57510.088*
H40B−0.22171.26280.52330.088*
H41A−0.23481.48290.58060.135*
H41B−0.32601.44800.51280.135*
H41C−0.14751.44620.51850.135*
H43A0.49000.86310.61170.170*
H43B0.61810.80890.65830.170*
H44A0.53630.64270.62730.218*
H44B0.56480.71060.56460.218*
H44C0.39840.69280.58460.218*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0682 (5)0.0402 (3)0.0602 (4)−0.0072 (3)−0.0073 (3)−0.0002 (3)
Br20.0684 (5)0.0400 (3)0.0662 (5)0.0054 (3)−0.0103 (3)0.0053 (3)
S10.0468 (9)0.0620 (9)0.0474 (9)−0.0140 (7)0.0051 (7)0.0089 (7)
S20.0447 (9)0.0639 (10)0.0497 (10)0.0139 (7)0.0043 (7)−0.0032 (7)
C10.047 (4)0.072 (4)0.046 (4)0.001 (3)0.010 (3)0.018 (3)
C20.045 (4)0.054 (3)0.043 (4)0.010 (3)0.002 (3)0.002 (3)
C30.035 (3)0.036 (3)0.047 (3)0.009 (2)−0.003 (3)−0.002 (2)
C40.034 (3)0.035 (3)0.049 (4)0.007 (2)0.007 (3)0.004 (2)
C50.033 (3)0.030 (3)0.046 (3)0.007 (2)0.004 (2)0.004 (2)
C60.049 (4)0.038 (3)0.046 (4)−0.008 (3)0.003 (3)−0.001 (3)
C70.048 (4)0.032 (3)0.061 (4)−0.002 (3)0.013 (3)0.003 (3)
C80.040 (3)0.036 (3)0.041 (3)0.002 (2)0.010 (2)0.005 (2)
C90.036 (3)0.035 (3)0.043 (3)−0.001 (2)0.003 (2)0.006 (2)
C100.038 (3)0.038 (3)0.046 (3)−0.006 (2)0.005 (3)0.000 (2)
C110.042 (3)0.037 (3)0.040 (3)0.000 (2)0.007 (3)0.005 (2)
C120.056 (4)0.037 (3)0.055 (4)0.002 (3)0.002 (3)0.000 (3)
C130.057 (4)0.052 (4)0.068 (5)0.000 (3)−0.010 (3)0.004 (3)
C140.056 (4)0.052 (4)0.046 (4)−0.009 (3)0.004 (3)−0.005 (3)
C150.063 (4)0.035 (3)0.056 (4)−0.001 (3)0.008 (3)0.003 (3)
C160.048 (4)0.039 (3)0.052 (4)−0.002 (3)0.001 (3)0.005 (3)
C170.085 (5)0.066 (4)0.065 (5)−0.022 (4)0.005 (4)−0.015 (4)
C180.100 (6)0.093 (6)0.065 (5)−0.023 (5)−0.009 (4)−0.021 (4)
C190.134 (10)0.129 (9)0.156 (11)−0.018 (7)−0.031 (8)−0.064 (8)
C200.057 (4)0.044 (3)0.048 (4)−0.008 (3)0.005 (3)0.004 (3)
C210.113 (7)0.106 (6)0.057 (5)−0.006 (5)0.039 (5)0.012 (4)
C220.208 (13)0.123 (8)0.088 (7)0.016 (8)0.070 (8)0.040 (6)
C230.040 (4)0.075 (4)0.049 (4)−0.004 (3)0.005 (3)−0.012 (3)
C240.040 (3)0.059 (4)0.049 (4)−0.019 (3)−0.003 (3)0.004 (3)
C250.039 (3)0.036 (3)0.044 (3)−0.015 (2)−0.003 (3)0.001 (2)
C260.024 (3)0.038 (3)0.051 (4)−0.009 (2)0.001 (2)−0.004 (2)
C270.039 (3)0.039 (3)0.056 (4)0.005 (3)0.000 (3)0.004 (3)
C280.051 (4)0.036 (3)0.057 (4)−0.001 (3)0.008 (3)−0.003 (3)
C290.039 (3)0.034 (3)0.047 (3)−0.001 (2)0.007 (3)−0.001 (2)
C300.037 (3)0.033 (3)0.049 (3)−0.004 (2)0.003 (3)−0.001 (2)
C310.044 (3)0.035 (3)0.044 (3)0.008 (2)0.004 (3)−0.002 (2)
C320.033 (3)0.030 (3)0.051 (4)−0.008 (2)0.001 (3)0.001 (2)
C330.044 (3)0.034 (3)0.041 (3)0.000 (2)0.009 (3)0.000 (2)
C340.047 (4)0.036 (3)0.053 (4)−0.004 (3)−0.003 (3)0.001 (3)
C350.061 (4)0.036 (3)0.056 (4)0.001 (3)0.002 (3)0.003 (3)
C360.052 (4)0.050 (3)0.041 (3)0.003 (3)0.002 (3)0.004 (3)
C370.056 (4)0.051 (4)0.059 (4)−0.012 (3)−0.012 (3)0.005 (3)
C380.050 (4)0.036 (3)0.066 (4)−0.003 (3)0.002 (3)0.010 (3)
C390.069 (5)0.061 (4)0.048 (4)0.013 (3)0.003 (3)0.008 (3)
C400.089 (6)0.076 (5)0.055 (4)0.015 (4)0.000 (4)0.011 (4)
C410.146 (9)0.085 (6)0.101 (7)0.021 (6)−0.030 (6)0.025 (5)
C420.055 (4)0.047 (3)0.055 (4)0.009 (3)0.014 (3)−0.001 (3)
C430.253 (14)0.097 (7)0.087 (7)−0.033 (8)0.105 (8)−0.031 (6)
C440.207 (13)0.126 (9)0.114 (9)0.013 (9)0.083 (9)−0.009 (7)
O10.094 (4)0.073 (3)0.058 (3)−0.044 (3)0.013 (3)0.008 (2)
O20.075 (3)0.056 (3)0.062 (3)−0.015 (2)−0.014 (2)−0.003 (2)
O30.073 (3)0.059 (3)0.066 (3)0.016 (2)0.024 (2)0.002 (2)
O40.088 (4)0.065 (3)0.048 (3)0.008 (2)0.022 (2)0.018 (2)
O50.087 (4)0.066 (3)0.075 (3)0.037 (3)0.017 (3)−0.006 (2)
O60.071 (3)0.053 (2)0.057 (3)0.003 (2)−0.010 (2)0.009 (2)
O70.082 (4)0.063 (3)0.082 (4)−0.019 (3)0.034 (3)0.006 (2)
O80.125 (5)0.062 (3)0.062 (3)−0.008 (3)0.038 (3)−0.014 (2)

Geometric parameters (Å, °)

Br1—C31.887 (5)C39—O61.418 (7)
Br2—C251.877 (6)C39—C401.495 (9)
S1—C11.682 (6)C40—C411.513 (10)
S1—C41.737 (5)C42—O71.192 (7)
S2—C231.697 (7)C42—O81.329 (7)
S2—C261.744 (5)C43—C441.329 (12)
C1—C21.350 (8)C43—O81.480 (9)
C2—C31.402 (8)C1—H10.9300
C3—C41.375 (7)C2—H20.9301
C4—C51.456 (7)C6—H60.9300
C5—C61.338 (7)C8—H80.9800
C5—C101.516 (7)C9—H90.9800
C6—C71.451 (8)C10—H10A0.9700
C7—O11.216 (6)C10—H10B0.9700
C7—C81.521 (8)C12—H120.9299
C8—C201.507 (8)C13—H130.9301
C8—C91.522 (7)C15—H150.9300
C9—C111.506 (7)C16—H160.9300
C9—C101.533 (7)C17—H17A0.9699
C11—C161.372 (7)C17—H17B0.9700
C11—C121.400 (8)C18—H18A0.9700
C12—C131.364 (8)C18—H18B0.9700
C13—C141.378 (8)C19—H19A0.9600
C14—C151.373 (8)C19—H19B0.9600
C14—O21.376 (7)C19—H19C0.9600
C15—C161.391 (8)C21—H21A0.9700
C17—O21.411 (7)C21—H21B0.9700
C17—C181.518 (9)C22—H22A0.9600
C18—C191.464 (11)C22—H22B0.9599
C20—O31.193 (7)C22—H22C0.9601
C20—O41.335 (7)C23—H230.9300
C21—C221.449 (11)C24—H240.9299
C21—O41.467 (8)C27—H270.9301
C23—C241.363 (8)C29—H290.9800
C24—C251.390 (8)C30—H300.9800
C25—C261.378 (7)C31—H31A0.9700
C26—C321.450 (7)C31—H31B0.9700
C27—C321.338 (7)C34—H340.9300
C27—C281.448 (8)C35—H350.9299
C28—O51.223 (7)C37—H370.9300
C28—C291.510 (8)C38—H380.9300
C29—C421.503 (8)C39—H39A0.9700
C29—C301.530 (7)C39—H39B0.9701
C30—C311.519 (7)C40—H40A0.9700
C30—C331.519 (7)C40—H40B0.9700
C31—C321.514 (7)C41—H41A0.9600
C33—C341.376 (7)C41—H41B0.9601
C33—C381.393 (8)C41—H41C0.9600
C34—C351.386 (8)C43—H43A0.9700
C35—C361.371 (8)C43—H43B0.9700
C36—C371.376 (8)C44—H44A0.9600
C36—O61.385 (7)C44—H44B0.9600
C37—C381.366 (8)C44—H44C0.9600
C1—S1—C493.0 (3)C10—C9—H9107.0
C23—S2—C2693.2 (3)C5—C10—H10A108.8
C2—C1—S1112.6 (5)C9—C10—H10A108.8
C1—C2—C3111.4 (5)C5—C10—H10B108.9
C4—C3—C2115.2 (5)C9—C10—H10B108.8
C4—C3—Br1127.1 (4)H10A—C10—H10B107.7
C2—C3—Br1117.6 (4)C13—C12—H12119.4
C3—C4—C5133.8 (5)C11—C12—H12119.6
C3—C4—S1107.7 (4)C12—C13—H13119.3
C5—C4—S1118.5 (4)C14—C13—H13119.3
C6—C5—C4122.6 (5)C14—C15—H15120.6
C6—C5—C10119.6 (5)C16—C15—H15120.4
C4—C5—C10117.8 (5)C11—C16—H16118.6
C5—C6—C7123.6 (5)C15—C16—H16118.5
O1—C7—C6120.9 (5)O2—C17—H17A110.1
O1—C7—C8120.4 (5)C18—C17—H17A110.1
C6—C7—C8118.7 (5)O2—C17—H17B110.2
C20—C8—C7106.6 (5)C18—C17—H17B110.3
C20—C8—C9112.3 (4)H17A—C17—H17B108.5
C7—C8—C9112.9 (4)C19—C18—H18A109.0
C11—C9—C8113.7 (4)C17—C18—H18A108.9
C11—C9—C10111.4 (4)C19—C18—H18B108.7
C8—C9—C10110.3 (4)C17—C18—H18B108.8
C5—C10—C9113.6 (4)H18A—C18—H18B107.7
C16—C11—C12116.6 (5)C18—C19—H19A109.6
C16—C11—C9120.7 (5)C18—C19—H19B109.5
C12—C11—C9122.7 (5)H19A—C19—H19B109.5
C13—C12—C11120.9 (5)C18—C19—H19C109.3
C12—C13—C14121.4 (6)H19A—C19—H19C109.5
C15—C14—O2125.2 (5)H19B—C19—H19C109.5
C15—C14—C13119.1 (6)C22—C21—H21A110.1
O2—C14—C13115.7 (6)O4—C21—H21A110.3
C14—C15—C16119.0 (5)C22—C21—H21B110.3
C11—C16—C15122.9 (5)O4—C21—H21B110.2
O2—C17—C18107.6 (6)H21A—C21—H21B108.5
C19—C18—C17113.6 (8)C21—C22—H22A109.4
O3—C20—O4124.1 (6)C21—C22—H22B109.5
O3—C20—C8123.6 (5)H22A—C22—H22B109.5
O4—C20—C8112.3 (5)C21—C22—H22C109.5
C22—C21—O4107.4 (7)H22A—C22—H22C109.5
C24—C23—S2111.3 (5)H22B—C22—H22C109.5
C23—C24—C25112.6 (6)C24—C23—H23124.5
C26—C25—C24115.3 (5)S2—C23—H23124.2
C26—C25—Br2126.7 (4)C23—C24—H24123.7
C24—C25—Br2118.0 (4)C25—C24—H24123.7
C25—C26—C32134.8 (5)C32—C27—H27118.4
C25—C26—S2107.7 (4)C28—C27—H27118.2
C32—C26—S2117.5 (4)C42—C29—H29108.3
C32—C27—C28123.4 (5)C28—C29—H29108.4
O5—C28—C27119.7 (6)C30—C29—H29108.5
O5—C28—C29120.8 (6)C31—C30—H30106.9
C27—C28—C29119.5 (5)C33—C30—H30106.9
C42—C29—C28107.6 (5)C29—C30—H30107.0
C42—C29—C30111.9 (4)C32—C31—H31A108.7
C28—C29—C30112.0 (5)C30—C31—H31A108.6
C31—C30—C33112.3 (4)C32—C31—H31B108.9
C31—C30—C29110.5 (4)C30—C31—H31B108.7
C33—C30—C29112.8 (4)H31A—C31—H31B107.6
C32—C31—C30114.2 (5)C33—C34—H34119.0
C27—C32—C26122.5 (5)C35—C34—H34119.0
C27—C32—C31119.0 (5)C36—C35—H35120.3
C26—C32—C31118.5 (5)C34—C35—H35120.3
C34—C33—C38117.2 (5)C38—C37—H37119.7
C34—C33—C30120.0 (5)C36—C37—H37119.7
C38—C33—C30122.8 (5)C37—C38—H38119.4
C33—C34—C35122.0 (5)C33—C38—H38119.4
C36—C35—C34119.4 (5)O6—C39—H39A110.2
C35—C36—C37119.5 (6)C40—C39—H39A110.2
C35—C36—O6124.4 (5)O6—C39—H39B110.0
C37—C36—O6116.1 (5)C40—C39—H39B110.1
C38—C37—C36120.7 (6)H39A—C39—H39B108.5
C37—C38—C33121.2 (5)C39—C40—H40A109.2
O6—C39—C40107.9 (5)C41—C40—H40A109.1
C39—C40—C41112.1 (7)C39—C40—H40B109.1
O7—C42—O8123.2 (6)C41—C40—H40B109.3
O7—C42—C29124.7 (6)H40A—C40—H40B107.9
O8—C42—C29112.1 (5)C40—C41—H41A109.6
C44—C43—O8111.6 (9)C40—C41—H41B109.4
C14—O2—C17118.9 (5)H41A—C41—H41B109.5
C20—O4—C21114.1 (5)C40—C41—H41C109.4
C36—O6—C39118.1 (5)H41A—C41—H41C109.5
C42—O8—C43114.5 (6)H41B—C41—H41C109.5
C2—C1—H1123.7C44—C43—H43A109.3
S1—C1—H1123.7O8—C43—H43A109.3
C1—C2—H2124.4C44—C43—H43B109.3
C3—C2—H2124.2O8—C43—H43B109.3
C5—C6—H6118.3H43A—C43—H43B108.0
C7—C6—H6118.1C43—C44—H44A109.5
C20—C8—H8108.2C43—C44—H44B109.5
C7—C8—H8108.2H44A—C44—H44B109.5
C9—C8—H8108.4C43—C44—H44C109.5
C11—C9—H9107.0H44A—C44—H44C109.5
C8—C9—H9107.1H44B—C44—H44C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2180).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds New York: Wiley-Interscience.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1150. [PubMed]
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  • Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o3616.
  • Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o254–o255.
  • Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008). Acta Cryst. E64, o560. [PMC free article] [PubMed]
  • Herrendorf, W. & Bärnighausen, H. (1997). HABITUS University of Karlsruhe, Germany.
  • House, H. O. (1972). Modern Synthetic Reactions, 2nd ed., p. 595. Menlo Park, California: W. A. Benjamin.
  • Padmavathi, V., Mohana Reddy, B. J., Balaiah, A., Venugopal Reddy, K. & Bhaskar Reddy, D. (2000). Molecules, 5, 1281–1286.
  • Padmavathi, V., Sharmila, K., Balaiah, A., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001a). Synth. Commun.31, 2119–2126.
  • Padmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun.5, 451–456.
  • Padmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001b). Indian J. Chem. Sect B, 40, 11–14.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tabba, H. D., Yousef, N. M. & Alarab, M. M. (1995). Collect. Czech. Chem. Commun.60, 594–604.
  • Westrip (2008). publCIF In preparation.
  • Yao, L.-Y., Zhang, C. & Wang, B.-S. (2006). Acta Cryst. E62, o2768–o2769.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography