PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1438–m1439.
Published online 2008 October 18. doi:  10.1107/S1600536808033564
PMCID: PMC2959651

Tris(ethane-1,2-diamine-κ2 N,N′)cobalt(II) cis-aqua-2κO-μ-cyanido-1:2κ2 C:N-hepta­cyanido-1κ7 C-bis­(ethane-1,2-diamine-2κ2 N,N′)cobalt(II)molybdenum(IV) dihydrate

Abstract

The title compound, [Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2O, is isostructural with the NiII analogue. The MoIV atom is coordinated by eight cyanide ligands, one of which forms a bridge to a CoII atom that is itself coordinated by two bidentate ethane-1,2-diamine (en) ligands and one water mol­ecule. Another CoII complex, coordinated to three bidentate en ligands, acts as the counter-ion. The crystal structure contains O—H(...)N/O, N—H(...)N/O and C—H(...)N/O hydrogen bonds, which form a three-dimensional network.

Related literature

For the isostructural NiII compound, see: Withers et al. (2005 [triangle]); Chang et al. (2002 [triangle]). For other similar complexes and syntheses, see: Przychodzen et al. (2006 [triangle]); Holmes et al. (2002 [triangle]); Beauvais & Long (2001 [triangle]); Leipoldt et al. (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1438-scheme1.jpg

Experimental

Crystal data

  • [Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2O
  • M r = 776.53
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1438-efi1.jpg
  • a = 11.5377 (3) Å
  • b = 14.8830 (3) Å
  • c = 18.7376 (4) Å
  • V = 3217.54 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.45 mm−1
  • T = 100 (2) K
  • 0.35 × 0.26 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.640, T max = 0.750
  • 41911 measured reflections
  • 8019 independent reflections
  • 6732 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.093
  • S = 1.06
  • 8019 reflections
  • 397 parameters
  • 7 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −1.64 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3559 Friedel pairs
  • Flack parameter: −0.063 (15)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033564/bi2302sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033564/bi2302Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of the Free State is gratefully aknowledged for financial support.

supplementary crystallographic information

Comment

The use of cyanometalates as molecular building blocks for potentially constructing clusters and networks with adjustable magnetic properties has developed a lot of interest over the last few years (Beauvais & Long, 2001; Przychodzen et al., 2006; Withers et al., 2005).

The title compound, [Co(en)3][Co(H2O)(en)22-NC)Mo(CN)7].2H2O (en = 1,2 diaminoethane), is isostructural with its NiII analogue (Withers et al., 2005; Chang et al., 2002). The MoIV metal centre is coordinated by eight cyanide ligands, one of which forms a bridge towards a CoII metal centre that is itself coordinated by two bidentate en ligands and a water molecule (Fig. 1). Another CoII complex, coordinated to three bidentate en ligands, acts as counter ion. The octahedral geometry around the two CoII atoms is slightly distorted, as illustrated by the bite angles of the bidentate en ligands, which vary between 81.55 (12) and 94.55 (13) °. The eight-coordinate MoIV atom forms a slightly distorted square antiprism with the cyanide ligands.

The crystal structure shows a range of hydrogen-bonding of the types N—H···N/O, O—H···N/O and C—H···N/O (Table 2), forming a three-dimensional network.

Experimental

The synthesis of K4[Mo(CN)8] and [Co(en)3]2+ is described elsewhere (Leipoldt et al., 1974; Holmes et al., 2002). The title compound was prepared by adding aqueous soloutions of [Mo(CN)8]4- and [Co(en)3]2+ (1: 2 mol ratio) and allowing to stand for several days. Red plate-like crystals were obtained after several days. The presence of cobalt was confirmed by Inductively Coupled Plasma (IPC) analysis.

Refinement

The H atoms of the water molecules were located in a difference Fourier map and their positional parameters refined with Uiso(H) = 1.5Ueq(O), and with the O—H distances restrained to be 0.84 (1) Å. Other H atoms were placed geometrically and allowed to ride during subsequent refinement.

Figures

Fig. 1.
Molecular structure of the title compound with displacement ellipsoids shown at 50% probability for non-H atoms. The lattice water molecules are omitted.

Crystal data

[Co(C2H8N2)3][CoMo(CN)8(C2H8N2)2(H2O)]·2H2OF(000) = 1600
Mr = 776.53Dx = 1.603 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5696 reflections
a = 11.5377 (3) Åθ = 2.1–28.3°
b = 14.8830 (3) ŵ = 1.45 mm1
c = 18.7376 (4) ÅT = 100 K
V = 3217.54 (13) Å3Plate, red
Z = 40.35 × 0.26 × 0.20 mm

Data collection

Bruker APEXII CCD diffractometer6732 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.077
Absorption correction: multi-scan (SADABS; Bruker, 2004)θmax = 28.3°, θmin = 2.1°
Tmin = 0.640, Tmax = 0.750h = −15→15
41911 measured reflectionsk = −19→19
8019 independent reflectionsl = −24→24

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0424P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max = 0.028
wR(F2) = 0.093Δρmax = 0.46 e Å3
S = 1.06Δρmin = −1.64 e Å3
8019 reflectionsAbsolute structure: Flack (1983), 3559 Friedel pairs
397 parametersFlack parameter: −0.063 (15)
7 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F\2\) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.24254 (2)0.51274 (2)0.608619 (15)0.00886 (7)
Co20.25983 (4)0.73223 (3)0.38903 (2)0.00726 (10)
Co10.22748 (4)−0.17502 (3)0.89163 (2)0.00804 (10)
N330.1756 (3)−0.0605 (2)0.95186 (16)0.0147 (7)
H33B0.1844−0.01020.92580.018*
H33A0.1006−0.06530.96450.018*
N290.1544 (3)−0.1322 (2)0.79287 (16)0.0143 (7)
H29B0.1481−0.17920.76290.017*
H29A0.0831−0.10940.80020.017*
N340.3084 (3)−0.2088 (2)0.99000 (17)0.0173 (8)
H34A0.2952−0.26691.00050.021*
H34B0.3855−0.20030.98680.021*
N300.3729 (3)−0.1043 (2)0.85102 (16)0.0161 (7)
H30B0.3806−0.05130.87380.019*
H30A0.4379−0.13650.8580.019*
N310.2809 (3)−0.3007 (2)0.84807 (17)0.0156 (7)
H31B0.2915−0.29530.80070.019*
H31A0.3486−0.31760.86780.019*
N320.0747 (3)−0.2480 (2)0.91233 (17)0.0166 (8)
H32B0.0739−0.2670.95790.02*
H32A0.0121−0.2130.9050.02*
C90.2306 (3)−0.0629 (3)0.76151 (19)0.0168 (8)
H9B0.215−0.00510.78340.02*
H9A0.2159−0.05780.71070.02*
C110.2503 (4)−0.0570 (2)1.01647 (18)0.0171 (8)
H11B0.2164−0.01731.05180.02*
H11A0.3265−0.03431.00410.02*
C120.2599 (4)−0.1509 (2)1.04599 (18)0.0167 (8)
H12B0.3099−0.15121.08760.02*
H12A0.184−0.17261.06010.02*
C130.0728 (4)−0.3255 (3)0.8632 (2)0.0175 (9)
H13A0.0527−0.30560.81550.021*
H13B0.015−0.36860.87880.021*
C140.1913 (3)−0.3694 (3)0.8625 (2)0.0167 (9)
H14B0.2061−0.39760.90830.02*
H14A0.1938−0.41550.8260.02*
C100.3545 (3)−0.0890 (3)0.7740 (2)0.0167 (9)
H10A0.3724−0.14340.74770.02*
H10B0.4055−0.04170.75740.02*
C10.3326 (3)0.4932 (3)0.70783 (19)0.0135 (8)
C60.4102 (3)0.5675 (3)0.58215 (19)0.0146 (8)
N230.3798 (3)0.4855 (2)0.76167 (17)0.0179 (7)
N250.4996 (3)0.5958 (2)0.56850 (18)0.0209 (8)
C70.2162 (3)0.6069 (3)0.52324 (19)0.0115 (8)
C20.0689 (3)0.5478 (3)0.63968 (19)0.0138 (8)
N270.2112 (3)0.6594 (2)0.47794 (16)0.0164 (7)
N220.1263 (3)0.3320 (2)0.68324 (17)0.0182 (7)
N21−0.0255 (3)0.5631 (2)0.65610 (18)0.0194 (8)
C30.1686 (3)0.3946 (3)0.65782 (19)0.0126 (8)
C50.1426 (3)0.4461 (3)0.52647 (18)0.0115 (8)
C80.2476 (4)0.6432 (2)0.65994 (17)0.0130 (7)
C40.3543 (3)0.4051 (3)0.57178 (19)0.0139 (8)
O420.5286 (3)0.4769 (2)0.87944 (16)0.0277 (8)
O430.1617 (3)0.1648 (2)1.06962 (15)0.0238 (7)
N240.2504 (3)0.7142 (2)0.68527 (16)0.0187 (7)
N260.4141 (3)0.3472 (2)0.55381 (18)0.0200 (8)
N280.0874 (3)0.4089 (2)0.48443 (16)0.0153 (7)
N350.4319 (3)0.7425 (2)0.42627 (17)0.0137 (7)
H35A0.45870.79850.41930.016*
H35B0.43460.73040.47330.016*
N360.3217 (3)0.6119 (2)0.34467 (17)0.0170 (7)
H36B0.27080.56720.35260.02*
H36A0.33090.61820.29720.02*
C150.5036 (3)0.6773 (3)0.3866 (2)0.0197 (8)
H15B0.57510.66590.41230.024*
H15A0.5230.70120.340.024*
C160.4346 (4)0.5905 (3)0.3787 (2)0.0192 (9)
H16A0.47730.54810.34940.023*
H16B0.42190.56350.42520.023*
O410.2305 (2)0.85628 (18)0.44139 (13)0.0145 (6)
N370.2881 (3)0.8069 (2)0.29496 (16)0.0138 (7)
H37B0.33420.85430.30410.017*
H37A0.32260.77240.26170.017*
N380.0902 (3)0.7244 (2)0.34692 (17)0.0154 (7)
H38B0.06570.6670.34750.019*
H38A0.04150.75730.37380.019*
C170.0904 (3)0.7585 (3)0.2730 (2)0.0171 (9)
H17A0.0130.77740.25950.02*
H17B0.11510.71150.24040.02*
C180.1737 (3)0.8378 (3)0.2691 (2)0.0166 (9)
H18A0.180.8590.22030.02*
H18B0.14570.88680.29860.02*
H41A0.1590 (17)0.866 (3)0.442 (2)0.022*
H41B0.259 (3)0.856 (3)0.4833 (13)0.022*
H42A0.491 (4)0.507 (3)0.9084 (19)0.042*
H42B0.488 (4)0.481 (3)0.8422 (19)0.042*
H43A0.189 (3)0.201 (2)1.0999 (17)0.036*
H43B0.119 (3)0.127 (2)1.0899 (19)0.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.00841 (14)0.00942 (14)0.00875 (14)−0.00039 (12)0.00007 (14)−0.00012 (11)
Co20.0074 (2)0.0068 (2)0.0076 (2)−0.00054 (18)−0.0008 (2)0.00084 (18)
Co10.0077 (2)0.0081 (2)0.0083 (2)0.00020 (18)−0.0002 (2)−0.00015 (19)
N330.0139 (17)0.0168 (19)0.0135 (16)0.0022 (14)−0.0001 (13)0.0000 (14)
N290.0107 (16)0.0174 (18)0.0148 (17)−0.0017 (14)0.0021 (13)0.0022 (14)
N340.0182 (18)0.0146 (18)0.0191 (18)0.0034 (14)−0.0027 (14)0.0000 (14)
N300.0119 (17)0.0173 (19)0.0190 (18)0.0010 (14)0.0005 (13)0.0007 (14)
N310.0131 (17)0.0166 (18)0.0172 (17)0.0042 (14)−0.0011 (13)−0.0036 (13)
N320.0182 (19)0.0171 (19)0.0147 (18)0.0028 (15)−0.0008 (13)0.0040 (14)
C90.014 (2)0.020 (2)0.0164 (18)−0.0002 (18)0.0033 (16)0.0046 (16)
C110.018 (2)0.0155 (19)0.0176 (18)0.000 (2)−0.0020 (17)−0.0015 (15)
C120.019 (2)0.019 (2)0.0119 (17)0.0008 (18)−0.0030 (16)−0.0010 (14)
C130.019 (2)0.009 (2)0.025 (2)−0.0037 (17)−0.0024 (16)0.0031 (17)
C140.015 (2)0.015 (2)0.020 (2)−0.0006 (16)0.0009 (16)0.0007 (17)
C100.014 (2)0.018 (2)0.018 (2)−0.0037 (17)0.0051 (16)−0.0016 (18)
C10.0071 (17)0.018 (2)0.0156 (19)0.0040 (16)−0.0027 (14)−0.0018 (17)
C60.015 (2)0.017 (2)0.0123 (18)−0.0032 (17)−0.0016 (15)0.0022 (16)
N230.0146 (17)0.0209 (19)0.0181 (17)0.0018 (15)0.0014 (13)−0.0003 (15)
N250.0168 (19)0.026 (2)0.0197 (18)−0.0049 (16)0.0011 (14)−0.0001 (16)
C70.0096 (19)0.0147 (19)0.0102 (17)−0.0033 (15)−0.0008 (14)−0.0028 (15)
C20.0127 (19)0.012 (2)0.0165 (19)0.0006 (16)0.0016 (15)−0.0020 (16)
N270.0175 (18)0.0174 (18)0.0142 (16)−0.0010 (14)0.0007 (13)−0.0015 (14)
N220.0168 (18)0.021 (2)0.0172 (17)−0.0041 (16)−0.0046 (13)0.0038 (15)
N210.0163 (18)0.0160 (19)0.0260 (19)0.0005 (15)0.0020 (14)−0.0015 (16)
C30.0098 (18)0.018 (2)0.0104 (19)−0.0046 (16)−0.0028 (14)0.0004 (16)
C50.0111 (18)0.013 (2)0.0102 (18)0.0025 (16)0.0028 (14)0.0007 (16)
C80.0139 (19)0.0147 (19)0.0102 (16)−0.0017 (17)−0.0014 (15)0.0039 (13)
C40.012 (2)0.017 (2)0.0132 (19)−0.0004 (16)−0.0020 (15)−0.0021 (16)
O420.0262 (17)0.042 (2)0.0154 (15)0.0188 (15)−0.0059 (13)−0.0105 (15)
O430.0283 (18)0.0214 (18)0.0216 (16)−0.0077 (14)0.0068 (13)−0.0017 (14)
N240.0221 (19)0.0154 (17)0.0185 (16)−0.0011 (16)0.0016 (16)−0.0023 (13)
N260.0119 (17)0.027 (2)0.0214 (18)0.0046 (15)−0.0045 (14)−0.0077 (16)
N280.0152 (18)0.0132 (18)0.0176 (17)0.0004 (14)−0.0001 (14)0.0013 (14)
N350.0169 (18)0.0120 (17)0.0123 (16)0.0003 (14)−0.0013 (13)0.0009 (14)
N360.0210 (19)0.0152 (18)0.0148 (17)−0.0015 (15)−0.0045 (14)−0.0011 (14)
C150.0115 (18)0.024 (2)0.023 (2)0.0011 (16)0.0026 (17)−0.002 (2)
C160.018 (2)0.021 (2)0.019 (2)0.0060 (17)0.0020 (16)0.0003 (18)
O410.0107 (14)0.0178 (14)0.0150 (13)−0.0008 (12)0.0008 (11)−0.0011 (11)
N370.0134 (17)0.0158 (18)0.0122 (16)−0.0037 (14)0.0018 (12)−0.0013 (13)
N380.0137 (17)0.0135 (18)0.0192 (18)−0.0008 (14)−0.0020 (13)0.0029 (14)
C170.014 (2)0.023 (2)0.015 (2)−0.0012 (17)−0.0047 (16)0.0005 (18)
C180.013 (2)0.017 (2)0.021 (2)−0.0020 (17)−0.0015 (15)0.0028 (18)

Geometric parameters (Å, °)

Mo1—C72.149 (4)C12—H12A0.97
Mo1—C12.149 (4)C13—C141.515 (5)
Mo1—C22.150 (4)C13—H13A0.97
Mo1—C62.156 (4)C13—H13B0.97
Mo1—C32.161 (4)C14—H14B0.97
Mo1—C52.164 (4)C14—H14A0.97
Mo1—C82.168 (4)C10—H10A0.97
Mo1—C42.169 (4)C10—H10B0.97
Co2—N272.065 (3)C1—N231.152 (4)
Co2—N362.099 (3)C6—N251.144 (5)
Co2—N372.109 (3)C7—N271.155 (5)
Co2—N352.109 (3)C2—N211.155 (5)
Co2—N382.113 (3)N22—C31.154 (5)
Co2—O412.118 (3)C5—N281.155 (5)
Co1—N322.106 (4)C8—N241.158 (4)
Co1—N302.122 (3)C4—N261.154 (5)
Co1—N342.126 (3)O42—H42B0.84 (4)
Co1—N332.130 (3)O42—H42A0.82 (4)
Co1—N292.131 (3)O43—H43B0.84 (2)
Co1—N312.132 (3)O43—H43A0.85 (2)
N33—C111.487 (5)N35—C151.475 (5)
N33—H33B0.90N35—H35A0.90
N33—H33A0.90N35—H35B0.90
N29—C91.477 (5)N36—C161.485 (5)
N29—H29B0.90N36—H36B0.90
N29—H29A0.90N36—H36A0.90
N34—C121.468 (5)C15—C161.526 (6)
N34—H34A0.90C15—H15B0.97
N34—H34B0.90C15—H15A0.97
N30—C101.475 (5)C16—H16A0.97
N30—H30B0.90C16—H16B0.97
N30—H30A0.90O41—H41B0.85 (2)
N31—C141.479 (5)O41—H41A0.84 (2)
N31—H31B0.90N37—C181.479 (5)
N31—H31A0.90N37—H37B0.90
N32—C131.476 (5)N37—H37A0.90
N32—H32B0.90N38—C171.475 (5)
N32—H32A0.90N38—H38B0.90
C9—C101.500 (6)N38—H38A0.90
C9—H9B0.97C17—C181.524 (5)
C9—H9A0.97C17—H17A0.97
C11—C121.507 (5)C17—H17B0.97
C11—H11B0.97C18—H18A0.97
C11—H11A0.97C18—H18B0.97
C12—H12B0.97
C7—Mo1—C1143.17 (15)C10—C9—H9B109.9
C7—Mo1—C284.93 (14)N29—C9—H9A109.9
C1—Mo1—C2104.42 (14)C10—C9—H9A109.9
C7—Mo1—C673.08 (14)H9B—C9—H9A108.3
C1—Mo1—C679.42 (14)N33—C11—C12107.9 (3)
C2—Mo1—C6143.71 (16)N33—C11—H11B110.1
C7—Mo1—C3142.44 (14)C12—C11—H11B110.1
C1—Mo1—C373.26 (14)N33—C11—H11A110.1
C2—Mo1—C373.40 (15)C12—C11—H11A110.1
C6—Mo1—C3139.43 (15)H11B—C11—H11A108.4
C7—Mo1—C572.19 (14)N34—C12—C11108.0 (3)
C1—Mo1—C5144.18 (15)N34—C12—H12B110.1
C2—Mo1—C578.89 (14)C11—C12—H12B110.1
C6—Mo1—C5119.18 (13)N34—C12—H12A110.1
C3—Mo1—C573.74 (14)C11—C12—H12A110.1
C7—Mo1—C875.50 (13)H12B—C12—H12A108.4
C1—Mo1—C874.01 (14)N32—C13—C14109.2 (3)
C2—Mo1—C871.78 (15)N32—C13—H13A109.8
C6—Mo1—C874.91 (15)C14—C13—H13A109.8
C3—Mo1—C8123.39 (14)N32—C13—H13B109.8
C5—Mo1—C8137.76 (14)C14—C13—H13B109.8
C7—Mo1—C4109.20 (14)H13A—C13—H13B108.3
C1—Mo1—C483.56 (14)N31—C14—C13109.5 (3)
C2—Mo1—C4145.00 (15)N31—C14—H14B109.8
C6—Mo1—C470.90 (15)C13—C14—H14B109.8
C3—Mo1—C476.66 (15)N31—C14—H14A109.8
C5—Mo1—C475.64 (14)C13—C14—H14A109.8
C8—Mo1—C4141.90 (15)H14B—C14—H14A108.2
N27—Co2—N3687.94 (13)N30—C10—C9109.2 (3)
N27—Co2—N37173.08 (13)N30—C10—H10A109.8
N36—Co2—N3793.78 (13)C9—C10—H10A109.8
N27—Co2—N3591.53 (13)N30—C10—H10B109.8
N36—Co2—N3582.67 (12)C9—C10—H10B109.8
N37—Co2—N3595.34 (12)H10A—C10—H10B108.3
N27—Co2—N3891.17 (13)N23—C1—Mo1177.8 (4)
N36—Co2—N3896.88 (13)N25—C6—Mo1179.3 (4)
N37—Co2—N3881.97 (12)N27—C7—Mo1174.6 (3)
N35—Co2—N38177.24 (13)N21—C2—Mo1177.3 (4)
N27—Co2—O4192.32 (12)C7—N27—Co2159.1 (3)
N36—Co2—O41168.90 (12)N22—C3—Mo1178.2 (3)
N37—Co2—O4187.28 (11)N28—C5—Mo1177.7 (3)
N35—Co2—O4186.23 (12)N24—C8—Mo1177.9 (3)
N38—Co2—O4194.21 (12)N26—C4—Mo1178.4 (3)
N32—Co1—N30169.59 (12)H42B—O42—H42A103 (3)
N32—Co1—N3494.94 (13)H43B—O43—H43A110 (3)
N30—Co1—N3494.64 (13)C15—N35—Co2108.3 (2)
N32—Co1—N3394.55 (13)C15—N35—H35A110
N30—Co1—N3390.88 (13)Co2—N35—H35A110
N34—Co1—N3381.55 (12)C15—N35—H35B110
N32—Co1—N2989.02 (12)Co2—N35—H35B110
N30—Co1—N2981.55 (12)H35A—N35—H35B108.4
N34—Co1—N29175.62 (13)C16—N36—Co2108.2 (2)
N33—Co1—N2996.29 (12)C16—N36—H36B110.1
N32—Co1—N3181.96 (13)Co2—N36—H36B110.1
N30—Co1—N3193.99 (13)C16—N36—H36A110.1
N34—Co1—N3189.88 (13)Co2—N36—H36A110.1
N33—Co1—N31170.46 (12)H36B—N36—H36A108.4
N29—Co1—N3192.54 (13)N35—C15—C16108.2 (3)
C11—N33—Co1107.3 (2)N35—C15—H15B110.1
C11—N33—H33B110.3C16—C15—H15B110.1
Co1—N33—H33B110.3N35—C15—H15A110.1
C11—N33—H33A110.3C16—C15—H15A110.1
Co1—N33—H33A110.3H15B—C15—H15A108.4
H33B—N33—H33A108.5N36—C16—C15108.5 (3)
C9—N29—Co1108.6 (2)N36—C16—H16A110
C9—N29—H29B110C15—C16—H16A110
Co1—N29—H29B110N36—C16—H16B110
C9—N29—H29A110C15—C16—H16B110
Co1—N29—H29A110H16A—C16—H16B108.4
H29B—N29—H29A108.4Co2—O41—H41B111 (3)
C12—N34—Co1108.3 (2)Co2—O41—H41A108 (3)
C12—N34—H34A110H41B—O41—H41A112 (3)
Co1—N34—H34A110C18—N37—Co2107.5 (2)
C12—N34—H34B110C18—N37—H37B110.2
Co1—N34—H34B110Co2—N37—H37B110.2
H34A—N34—H34B108.4C18—N37—H37A110.2
C10—N30—Co1108.3 (2)Co2—N37—H37A110.2
C10—N30—H30B110H37B—N37—H37A108.5
Co1—N30—H30B110C17—N38—Co2109.3 (2)
C10—N30—H30A110C17—N38—H38B109.8
Co1—N30—H30A110Co2—N38—H38B109.8
H30B—N30—H30A108.4C17—N38—H38A109.8
C14—N31—Co1109.5 (2)Co2—N38—H38A109.8
C14—N31—H31B109.8H38B—N38—H38A108.3
Co1—N31—H31B109.8N38—C17—C18108.2 (3)
C14—N31—H31A109.8N38—C17—H17A110.1
Co1—N31—H31A109.8C18—C17—H17A110.1
H31B—N31—H31A108.2N38—C17—H17B110.1
C13—N32—Co1107.5 (2)C18—C17—H17B110.1
C13—N32—H32B110.2H17A—C17—H17B108.4
Co1—N32—H32B110.2N37—C18—C17107.8 (3)
C13—N32—H32A110.2N37—C18—H18A110.1
Co1—N32—H32A110.2C17—C18—H18A110.1
H32B—N32—H32A108.5N37—C18—H18B110.1
N29—C9—C10108.9 (3)C17—C18—H18B110.1
N29—C9—H9B109.9H18A—C18—H18B108.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N29—H29A···N22i0.902.593.313 (5)138
N29—H29B···N24ii0.902.453.243 (5)147
N30—H30A···N26iii0.902.393.121 (5)139
N31—H31B···N24ii0.902.223.079 (4)160
N32—H32A···N22i0.902.43.163 (5)143
N32—H32B···N26iv0.902.163.037 (5)164
N33—H33B···O41v0.902.513.233 (4)138
N34—H34A···N28iv0.902.533.213 (5)133
N34—H34B···N26iii0.902.533.408 (5)164
N36—H36A···N22vi0.902.313.195 (4)166
N36—H36B···N23vi0.902.563.151 (5)124
N37—H37A···N22vi0.902.223.103 (5)167
N37—H37B···N21vii0.902.173.035 (5)162
N38—H38A···N25viii0.902.493.282 (5)148
N38—H38B···O42vi0.902.473.350 (5)164
O41—H41A···N25viii0.84 (2)1.94 (2)2.764 (4)170 (4)
O41—H41B···O43vi0.85 (2)1.89 (2)2.724 (4)168 (4)
O42—H42A···N28v0.82 (4)2.10 (4)2.924 (4)173 (4)
O42—H42B···N230.84 (4)1.96 (4)2.799 (4)174 (4)
O43—H43A···N24v0.85 (2)2.15 (2)2.995 (4)174 (4)
O43—H43B···O42ix0.84 (3)1.95 (2)2.778 (4)168 (4)
C10—H10B···N23iii0.972.533.328 (5)139
C11—H11B···O42ix0.972.593.430 (5)145

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, y−1, z; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1/2, −y, z+1/2; (v) −x+1/2, −y+1, z+1/2; (vi) −x+1/2, −y+1, z−1/2; (vii) x+1/2, −y+3/2, −z+1; (viii) x−1/2, −y+3/2, −z+1; (ix) x−1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2302).

References

  • Beauvais, L. G. & Long, J. R. (2001). J. Am. Chem. Soc.124, 2110–2111. [PubMed]
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chang, F., Sun, H.-L., Kou, H. Z. & Gao, S. (2002). Inorg. Chem. Commun.5, 660–663.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Holmes, S. M., McKinley, S. G., Girolami, G. S., Szalay, P. S. & Dunbar, K. R. (2002). Inorg. Synth.33, 91–103.
  • Leipoldt, J. G., Bok, L. D. & Cilliers, P. J. Z. (1974). Z. Anorg. Allg. Chem.409, 343–344.
  • Przychodzen, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev.250, 2234–2260.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem.44, 352–358. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography