PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): i74.
Published online 2008 October 15. doi:  10.1107/S1600536808032972
PMCID: PMC2959646

An ortho­rhom­bic polymorph of cerium(III) ultraphosphate, CeP5O14

Abstract

Cerium(III) ultraphosphate, CeP5O14, was synthesized by a high-temperature solution reaction between CeO2 and NH4H2PO4 in a Ce–P molar ratio of 1:12. Colourless crystals of the ortho­rhom­bic polymorph were obtained by cooling the melt of the mixture. The structure contains (P5O14)3− anionic ribbons linked by distorted CeO8 polyhedra.

Related literature

For applications of rare-earth ultraphosphates, see: Cole et al. (2000 [triangle]); Katrusiak & Kaczmarek (1995 [triangle]); Kobayashi et al. (1976 [triangle]); Schulz et al. (1974 [triangle]). For a discussion of structure types in this chemical system, see: Averbuch-Pouchot & Durif (1992 [triangle]). For the triclinic polymorph of CeP5O14, see: Rzaigui et al. (1984 [triangle]).

Experimental

Crystal data

  • CeP5O14
  • M r = 518.97
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i74-efi1.jpg
  • a = 13.1252 (12) Å
  • b = 8.7991 (9) Å
  • c = 9.0741 (9) Å
  • V = 1047.97 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.19 mm−1
  • T = 293 (2) K
  • 0.08 × 0.08 × 0.05 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Molecular Structure Corporation & Rigaku, 2001 [triangle]) T min = 0.663, T max = 0.771
  • 7608 measured reflections
  • 1262 independent reflections
  • 1212 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.094
  • S = 1.00
  • 1262 reflections
  • 99 parameters
  • Δρmax = 1.70 e Å−3
  • Δρmin = −1.08 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032972/bi2303sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032972/bi2303Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This investigation was based on work supported by the Foundation of Yunnan University (Project No. 2007Q013B).

supplementary crystallographic information

Comment

Rare-earth ultraphosphates, LnP5O14 (Ln = rare-earth element), have attracted wide interest because of their potential applications in the laser domain (Schulz et al., 1974; Kobayashi et al., 1976; Katrusiak & Kaczmarek, 1995; Cole et al., 2000). These compounds can be generally classified into four structure types: monoclinic (P21/a), monoclinic (C2/c), orthorhombic (Pnma), and triclinic (P1) (Averbuch-Pouchot & Durif, 1992). In this chemical system, many of the compounds are isotypic, and some are polymorphic. However, many polymorphs of ultraphosphates LnP5O14 have not been realised to date. Herein, we present the synthesis and crystal structure of an orthorhombic polymorph of CeP5O14.

In the structure (Figs. 1 and 2), the Ce3+ cation plays an important bridging role, connecting neighbouring (P5O14)3- anionic ribbons. The CeO8 polyhedron is corner-sharing with eight PO4 tetrahedra, with the Ce—O bond distances ranging from 2.436 (5) to 2.534 (8) Å. The shortest Ce—Ce distance is 5.2271 (9) Å. The (P5O14)3- anionic ribbon may be described as two PO4 infinite chains linked by P(2)O4 tetrahedra, as shown in Fig. 3. P(1)O4, P(3)O4, and P(4)O4 tetrahedra are corner-shared to form screwed infinite chains along the b axis. P(2)O4 tetrahedra are corner-shared with two surrounding PO4 infinite chains along the a axis. Thus, a (P5O14)3- anionic ribbon is observed parallel to b.

Experimental

The title compound was prepared by a high-temperature solution reaction, using analytical reagent CeO2 and NH4H2PO4 in a molar ratio corresponding to Ce/P = 1:12. Starting mixtures were finely ground in an agate mortar to ensure optimal homogeneity and reactivity, then placed in a platinum crucible and heated at 373 K for 4 h. Afterwards, the mixtures were reground and heated to 973 K for 24 h. Finally, the temperature was cooled to 773 K at a rate of 2 K/h and air-quenched to room temperature. A few colourless, block-shaped crystals were obtained from the melt of the mixture.

Refinement

The position of the Ce atom was obtained using direct methods, and the remaining atoms were located in succesive difference Fourier syntheses. The chemical composition of the single crystal was confirmed by energy-dispersive X-ray (EDX) analysis, and no impurity elements were detected.

Figures

Fig. 1.
Asymmetric unit with displacement ellipsoids shown at 50% probability.
Fig. 2.
Projection of the structure along the b axis. The tetrahedra represent PO4 groups and the gray circles represent Ce3+ cations.
Fig. 3.
(P5O14)3- anionic ribbon running parallel to the b axis.

Crystal data

CeP5O14F(000) = 980
Mr = 518.97Dx = 3.289 Mg m3
Orthorhombic, PmnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2Cell parameters from 2047 reflections
a = 13.1252 (12) Åθ = 2.3–27.5°
b = 8.7991 (9) ŵ = 5.19 mm1
c = 9.0741 (9) ÅT = 293 K
V = 1047.97 (18) Å3Block, colourless
Z = 40.08 × 0.08 × 0.05 mm

Data collection

Rigaku Mercury CCD diffractometer1262 independent reflections
Radiation source: fine-focus sealed tube1212 reflections with I > 2σ(I)
graphiteRint = 0.072
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (CrystalClear; Molecular Structure Corporation & Rigaku, 2001)h = −17→16
Tmin = 0.663, Tmax = 0.771k = −11→11
7608 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048w = 1/[σ2(Fo2) + 37.6801P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.70 e Å3
1262 reflectionsΔρmin = −1.08 e Å3
99 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0114 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ce0.50000.72337 (7)0.68985 (6)0.00797 (19)
P10.2936 (2)0.50000.50000.0113 (6)
P20.00000.3121 (3)0.7524 (3)0.0091 (5)
P30.3233 (2)0.00000.50000.0102 (5)
P40.16332 (14)0.2351 (2)0.54996 (19)0.0098 (4)
O10.1129 (4)0.2256 (7)0.4081 (6)0.0189 (12)
O20.3474 (4)0.5859 (7)0.6151 (6)0.0182 (12)
O30.2451 (5)0.1123 (8)0.5815 (6)0.0295 (16)
O40.00000.4655 (9)0.6859 (9)0.0155 (16)
O50.2151 (5)0.3901 (7)0.5849 (7)0.0307 (17)
O60.3778 (4)−0.0799 (6)0.6175 (6)0.0165 (12)
O70.00000.2893 (10)0.9131 (8)0.0176 (17)
O80.0934 (4)0.2133 (6)0.6876 (6)0.0161 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ce0.0074 (3)0.0090 (3)0.0075 (3)0.0000.0000.0003 (2)
P10.0062 (11)0.0135 (13)0.0143 (13)0.0000.000−0.0033 (11)
P20.0089 (12)0.0120 (13)0.0063 (11)0.0000.000−0.0008 (10)
P30.0080 (11)0.0124 (13)0.0102 (12)0.0000.000−0.0013 (10)
P40.0059 (8)0.0152 (10)0.0083 (8)0.0002 (7)0.0001 (6)−0.0019 (7)
O10.021 (3)0.023 (3)0.013 (2)0.006 (3)−0.008 (2)−0.001 (2)
O20.014 (3)0.023 (3)0.018 (3)−0.006 (2)−0.003 (2)0.000 (2)
O30.029 (3)0.050 (4)0.010 (3)0.028 (3)0.001 (2)−0.004 (3)
O40.019 (4)0.012 (4)0.016 (4)0.0000.000−0.005 (3)
O50.034 (4)0.031 (4)0.027 (3)−0.027 (3)0.019 (3)−0.015 (3)
O60.016 (3)0.017 (3)0.016 (3)0.006 (2)−0.002 (2)0.001 (2)
O70.021 (4)0.024 (4)0.008 (3)0.0000.000−0.002 (3)
O80.017 (3)0.017 (3)0.014 (2)0.007 (2)0.005 (2)0.004 (2)

Geometric parameters (Å, °)

Ce—O22.436 (5)P2—O8ix1.614 (5)
Ce—O2i2.436 (5)P2—O81.614 (5)
Ce—O6ii2.449 (5)P3—O6x1.464 (5)
Ce—O6iii2.449 (5)P3—O61.464 (5)
Ce—O7iv2.513 (7)P3—O3x1.606 (6)
Ce—O1v2.514 (5)P3—O31.606 (6)
Ce—O1vi2.514 (5)P4—O11.450 (5)
Ce—O4vii2.534 (8)P4—O31.549 (6)
P1—O21.470 (6)P4—O51.557 (6)
P1—O2viii1.470 (6)P4—O81.562 (5)
P1—O5viii1.609 (6)O1—Ceiv2.514 (5)
P1—O51.609 (6)O4—Cexi2.534 (7)
P2—O71.472 (8)O6—Cexii2.449 (5)
P2—O41.479 (8)O7—Cevi2.513 (7)
O2—Ce—O2i110.6 (3)O2viii—P1—O5viii106.0 (3)
O2—Ce—O6ii144.55 (18)O2—P1—O5106.0 (3)
O2i—Ce—O6ii74.82 (19)O2viii—P1—O5109.8 (3)
O2—Ce—O6iii74.82 (19)O5viii—P1—O5100.4 (6)
O2i—Ce—O6iii144.55 (18)O7—P2—O4121.9 (5)
O6ii—Ce—O6iii81.8 (3)O7—P2—O8ix106.7 (3)
O2—Ce—O7iv72.54 (17)O4—P2—O8ix110.1 (3)
O2i—Ce—O7iv72.54 (17)O7—P2—O8106.7 (3)
O6ii—Ce—O7iv76.3 (2)O4—P2—O8110.1 (3)
O6iii—Ce—O7iv76.3 (2)O8ix—P2—O898.9 (4)
O2—Ce—O1v142.43 (19)O6x—P3—O6121.5 (5)
O2i—Ce—O1v79.83 (19)O6x—P3—O3x105.8 (3)
O6ii—Ce—O1v72.48 (18)O6—P3—O3x110.6 (3)
O6iii—Ce—O1v118.08 (19)O6x—P3—O3110.6 (3)
O7iv—Ce—O1v142.65 (14)O6—P3—O3105.8 (3)
O2—Ce—O1vi79.83 (19)O3x—P3—O3100.5 (5)
O2i—Ce—O1vi142.43 (19)O1—P4—O3116.1 (3)
O6ii—Ce—O1vi118.08 (19)O1—P4—O5115.5 (4)
O6iii—Ce—O1vi72.48 (18)O3—P4—O5105.7 (4)
O7iv—Ce—O1vi142.65 (14)O1—P4—O8115.8 (3)
O1v—Ce—O1vi72.2 (3)O3—P4—O8100.0 (3)
O2—Ce—O4vii71.29 (16)O5—P4—O8101.6 (3)
O2i—Ce—O4vii71.29 (16)P4—O1—Ceiv163.4 (4)
O6ii—Ce—O4vii138.78 (13)P1—O2—Ce148.0 (4)
O6iii—Ce—O4vii138.78 (14)P4—O3—P3141.9 (4)
O7iv—Ce—O4vii113.9 (3)P2—O4—Cexi129.5 (5)
O1v—Ce—O4vii79.0 (2)P4—O5—P1135.1 (4)
O1vi—Ce—O4vii79.0 (2)P3—O6—Cexii148.7 (3)
O2—P1—O2viii122.6 (5)P2—O7—Cevi174.7 (6)
O2—P1—O5viii109.8 (3)P4—O8—P2132.2 (4)

Symmetry codes: (i) −x+1, y, z; (ii) −x+1, y+1, z; (iii) x, y+1, z; (iv) −x+1/2, −y+1, z−1/2; (v) x+1/2, −y+1, z+1/2; (vi) −x+1/2, −y+1, z+1/2; (vii) x+1/2, y, −z+3/2; (viii) x, −y+1, −z+1; (ix) −x, y, z; (x) x, −y, −z+1; (xi) x−1/2, y, −z+3/2; (xii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2303).

References

  • Averbuch-Pouchot, M. T. & Durif, A. (1992). Z. Kristallogr.201, 69–92.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cole, J. M., Lees, M. R., Howard, J. A. K., Newport, R. J., Saunders, G. A. & Schönherr, E. (2000). J. Solid State Chem.150, 377–382.
  • Katrusiak, A. & Kaczmarek, F. (1995). Cryst. Res. Technol.30, 501–507.
  • Kobayashi, T., Sawada, T., Ikeo, H., Muto, K. & Kai, J. (1976). J. Phys. Soc. Jpn, 40, 595–596.
  • Molecular Structure Corporation & Rigaku (2001). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Rzaigui, M., Kbir Ariguib, N., Averbuch-Pouchot, M. T. & Durif, A. (1984). J. Solid State Chem.52, 61–65.
  • Schulz, H., Thiemann, K. H. & Fenner, J. (1974). Mater. Res. Bull.9, 1525–1530.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography