PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2242.
Published online 2008 October 31. doi:  10.1107/S1600536808035083
PMCID: PMC2959640

2,4,6-Trifluoro­aniline

Abstract

The title compound, C6H4F3N, is a fluoro derivative of aniline. The mol­ecule shows non-crystallographic mirror symmetry. Bond lengths are normal. The C—C—C angles show some deviation from the expected ideal values by up to 5°, a finding which is in accordance with a similar structure in the literature. In the crystal structure H(...)F contacts and H(...)N contacts lead to the formation of sheets whose surfaces are made up by the hydro­phobic phenyl rings.

Related literature

For the crystal structure of a related compound, see: Gdaniec (2007 [triangle]). For graph-set analysis, see: Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2242-scheme1.jpg

Experimental

Crystal data

  • C6H4F3N
  • M r = 147.10
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2242-efi5.jpg
  • a = 6.3220 (6) Å
  • b = 24.792 (2) Å
  • c = 3.8545 (5) Å
  • V = 604.14 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 200 (2) K
  • 0.50 × 0.09 × 0.05 mm

Data collection

  • Oxford Diffraction KappaCCD diffractometer
  • Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2005 [triangle])) T min = 0.921, T max = 0.992
  • 4517 measured reflections
  • 775 independent reflections
  • 489 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.082
  • S = 0.94
  • 775 reflections
  • 91 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035083/rn2051sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035083/rn2051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Peter Mayer for professional support.

supplementary crystallographic information

Comment

In a program focused on the synthesis of derivatives of phenylarsonic acid a number of substituted aniline-derivatives were chosen as starting materials. In order to compare the influence of an arsonic group on the geometry of these starting materials, the crystal structure of 2,4,6-trifluoroaniline was elucidated by means of single-crystal X-ray diffraction.

In the molecule (Fig. 1) the C–C–C angles deviate from the expected ideal value of 120° by up to 5°. Angles bigger than the expected value are invariably found at C atoms bonded to fluorine, the smallest angle being present on the C atom bearing the amino group. This finding is in agreement with the situation observed in 2,3,4,5,6-pentafluoroaniline (Gdaniec, 2007).

In the crystal structure hydrogen bonds between fluorine and the amino group are present. If contacts whose ranges fall 0.2Å below the sum of van der Waals radii of the respective atoms are taken into consideration, only one of the F atoms in ortho position to the amino group is participating in these intermolecular interactions. These connect the molecules into sheets parallel to [1 0 1]. The surfaces of these sheets are made up by the aromatic moieties (Fig. 2 and Fig. 3). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) the N–H···F pattern should be assigned a C(5) descriptor on the unitary level while the remaining H atom on nitrogen participates in a cooperative chain of hydrogen bonds (N–H···N).

Experimental

The compound was obtained commercially from Fluorochem. Crystals suitable for X-ray diffraction studies were obtained upon cooling the compound to 4 °C in a fridge.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms with Uiso(H) values of 1.2 Ueq(C) and 1.2 Ueq(N).

Due to the absence of a significant anomalous scatterer in the molecule, the Flack parameter is meaningless. Friedel opposites were merged and the absolute structure parameter was removed from the CIF file.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
The packing of the title compound, viewed along [0 0 - 1].
Fig. 3.
Intermolecular interactions in the crystal structure of the title compound, viewed along [0 0 1]. Symmetry operators: i -x + 3/2, -y, z - 1/2; ii -x + 1/2, -y, z - 1/2.

Crystal data

C6H4F3NF(000) = 296
Mr = 147.10Dx = 1.617 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1719 reflections
a = 6.3220 (6) Åθ = 4.1–26.3°
b = 24.792 (2) ŵ = 0.16 mm1
c = 3.8545 (5) ÅT = 200 K
V = 604.14 (11) Å3Rod, colourless
Z = 40.50 × 0.09 × 0.05 mm

Data collection

Oxford Diffraction KappaCCD diffractometer775 independent reflections
Radiation source: fine-focus sealed tube489 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 26.4°, θmin = 4.1°
Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2005))h = −7→7
Tmin = 0.921, Tmax = 0.992k = −30→30
4517 measured reflectionsl = −4→3

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.082H-atom parameters constrained
S = 0.94w = 1/[σ2(Fo2) + (0.0505P)2] where P = (Fo2 + 2Fc2)/3
775 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.16 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.8818 (2)0.10411 (5)−0.1028 (5)0.0618 (5)
F20.4694 (2)0.24248 (5)0.3783 (5)0.0712 (6)
F30.2254 (2)0.06360 (6)0.3828 (5)0.0715 (6)
N10.5886 (3)0.02701 (7)0.0726 (7)0.0564 (7)
H710.67690.0202−0.10540.068*
H720.46470.01090.06320.068*
C10.5551 (4)0.08172 (8)0.1384 (7)0.0398 (6)
C20.7034 (4)0.12061 (9)0.0624 (7)0.0414 (6)
C30.6805 (4)0.17436 (8)0.1376 (7)0.0447 (7)
H30.78680.20000.08110.054*
C40.4963 (4)0.18920 (8)0.2983 (7)0.0451 (7)
C50.3394 (4)0.15382 (8)0.3828 (8)0.0480 (7)
H50.21240.16520.49220.058*
C60.3757 (4)0.10062 (9)0.3004 (7)0.0444 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0434 (9)0.0688 (9)0.0731 (11)0.0014 (7)0.0104 (9)−0.0040 (10)
F20.0870 (11)0.0420 (8)0.0845 (14)0.0118 (8)−0.0120 (14)−0.0085 (10)
F30.0534 (9)0.0641 (9)0.0969 (14)−0.0156 (7)0.0105 (12)0.0123 (10)
N10.0574 (14)0.0408 (11)0.0712 (18)−0.0029 (10)−0.0014 (15)−0.0017 (12)
C10.0441 (13)0.0354 (12)0.0397 (16)−0.0004 (10)−0.0070 (14)0.0045 (12)
C20.0379 (13)0.0476 (14)0.0386 (16)0.0022 (11)−0.0023 (13)0.0011 (13)
C30.0503 (17)0.0412 (14)0.0426 (17)−0.0103 (11)−0.0064 (16)0.0057 (14)
C40.0573 (16)0.0326 (12)0.0453 (17)0.0063 (12)−0.0101 (16)−0.0018 (12)
C50.0445 (16)0.0496 (14)0.0499 (17)0.0094 (12)0.0004 (16)0.0009 (16)
C60.0408 (13)0.0473 (14)0.0453 (19)−0.0087 (12)0.0001 (14)0.0094 (13)

Geometric parameters (Å, °)

F1—C21.358 (3)C1—C61.377 (3)
F2—C41.367 (2)C2—C31.371 (3)
F3—C61.359 (2)C3—C41.369 (4)
N1—C11.396 (3)C3—H30.9500
N1—H710.9009C4—C51.364 (3)
N1—H720.8798C5—C61.376 (3)
C1—C21.377 (3)C5—H50.9500
C1—N1—H71114.6C2—C3—H3121.7
C1—N1—H72108.3C5—C4—F2118.5 (2)
H71—N1—H72115.8C5—C4—C3123.6 (2)
C2—C1—C6114.8 (2)F2—C4—C3117.9 (2)
C2—C1—N1122.6 (2)C4—C5—C6116.1 (2)
C6—C1—N1122.5 (2)C4—C5—H5121.9
F1—C2—C3118.7 (2)C6—C5—H5121.9
F1—C2—C1117.04 (19)F3—C6—C5118.5 (2)
C3—C2—C1124.3 (2)F3—C6—C1116.9 (2)
C4—C3—C2116.5 (2)C5—C6—C1124.6 (2)
C4—C3—H3121.7
C6—C1—C2—F1−178.9 (2)F2—C4—C5—C6−179.2 (2)
N1—C1—C2—F14.2 (4)C3—C4—C5—C60.7 (4)
C6—C1—C2—C30.0 (4)C4—C5—C6—F3179.2 (3)
N1—C1—C2—C3−176.9 (3)C4—C5—C6—C1−0.8 (4)
F1—C2—C3—C4178.8 (2)C2—C1—C6—F3−179.5 (2)
C1—C2—C3—C4−0.1 (4)N1—C1—C6—F3−2.7 (4)
C2—C3—C4—C5−0.2 (4)C2—C1—C6—C50.5 (4)
C2—C3—C4—F2179.6 (2)N1—C1—C6—C5177.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H71···N1i0.902.263.110 (3)157
N1—H72···F3ii0.882.313.086 (2)147

Symmetry codes: (i) −x+3/2, −y, z−1/2; (ii) −x+1/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2051).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Gdaniec, M. (2007). Acta Cryst. E63, o2954.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon,England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography