PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1453.
Published online 2008 October 22. doi:  10.1107/S1600536808033722
PMCID: PMC2959639

(Benzophenone imine-κN)­chlorido(hydrido­tripyrazolyl­borato)­(triphenyl­phosphine)ruthenium(II) diethyl ether solvate

Abstract

The reaction of RuCl(Tp)(Ph3P)2, where Tp is [(CH)3N2]3BH, with benzophenone imine leads to the formation of the title compound, [Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10O. The environment about the Ru atom corresponds to a slightly distorted octa­hedron and the bite angle of the Tp ligand produces an average N—Ru—N angle of 86.3 (9)°. The three Ru—N(Tp) bond lengths [2.117 (2), 2.079 (2) and 2.084 (2) Å] are slightly longer than the average distance (2.038 Å) in other ruthenium–Tp complexes.

Related literature

For background literature, see: Albertin et al. (2008 [triangle]); Burrows (2001 [triangle]); Harman & Tube (1988 [triangle]); Pavlik et al. (2005 [triangle]). For related structures, see: Alock et al. (1992 [triangle]); Bohanna et al. (1996 [triangle]); Gemel et al. (1996 [triangle]); Slugovc et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1453-scheme1.jpg

Experimental

Crystal data

  • [Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10O
  • M r = 867.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1453-efi1.jpg
  • a = 9.3768 (1) Å
  • b = 30.1803 (5) Å
  • c = 14.9092 (2) Å
  • β = 96.126 (1)°
  • V = 4195.13 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 295 (2) K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.915, T max = 0.952
  • 28699 measured reflections
  • 9587 independent reflections
  • 7313 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.105
  • S = 1.02
  • 9587 reflections
  • 505 parameters
  • H-atom parameters constrained
  • Δρmax = 1.60 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033722/rk2110sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033722/rk2110Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the National Science Council, Taiwan, and in part by the Project of the Specific Research Fields of Tatung University, Taiwan (grant No. B96-C07-081), and the Project of the Specific Research Fields of Chung Yuan Christian University, Taiwan (grant No. CYCU-97-CR-CH). We also thank Mr. Yi-Hung Liu (Department of Chemistry, National Taiwan University, Taiwan) for his assistance in the X-ray single-crystal structure analysis.

supplementary crystallographic information

Comment

Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex RuCl(Tp)(PPh3)2 (Alock et al., 1992) has been used as the starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphines (Burrows, 2001). On the other hand, despite the large number of known transition metal complexes containing multidentate imine ligands, the monodentate nitrogen-bond imine derivatives are rather rare (Albertin et al., 2008). This is somewhat surprising and may be partly due to the weak Lewis basicity of the imine nitrogen atom (Harman & Tube 1988). However, coordination of an imine on a metal fragment would be an important step in its activation toward nucleophilic attack or its hydrogenation reaction to give the amine.

The complex [RuCl(Tp)(PPh3)2] reacts smoothly with benzophenone imine in warm toluene affording the title compound RuCl(Tp)(PPh3)(HN═CPh2) ((I)). The complex (I) is yellow crystalline solid which in their IR spectra display one medium band near 3312 cm-1, attributable to ν(NH) in the imine ligand. We have observed that the benzophenone imine is lost readily in solution. It appears that a rapid dissociation equilibrium occurs which leads to the formation of variable amounts of free imine plus other species. This behavior has been observed in other imine complexes of ruthenium, as in the case of RuHCl(CO)(HN═CPh2)(PiPr3)2, where PiPr is tri(isopropyl)phosphine, (Bohanna et al., 1996), and hence in all further operations for the purification of (I), an excess of free imine was added in order to prevent decomposition by imine ligand dissociation. In complex (I), the environment about the ruthenium metal center corresponds to a slightly distorted octahedron and the bite angle of the Tp ligand produces an average N—Ru—N angle of 86.3° only slightly distorted from 90°. The three Ru—N(Tp) bond lengths: 2.117 (2), 2.079 (2) and 2.084 (2) Å are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel et al., 1996; Slugovc et al., 1998). The Ru1—N7 and N7—C10 bond lengths of 2.063 (2) Å and 1.284 (3) Å correspond to single Ru—N and double C═N bonds. The angles (121.5 (2)°, 120.2 (3)° and 117.9 (2)°) around C10 indicate a sp2 hybridization as expected.

Experimental

The synthesis of the title compound (I) was carried out as follows: to a solution of RuCl(Tp)(PPh3)2 (3.95 g, 4.50 mmol) in toluene (100 ml), an excess of benzophenone imine (7.9 ml, 45.0 mmol) were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature. Then, it was concentrated to approximately half of the volume and cooled to 253 K. The yellow precipitate was filtered off, washed with ethanol and ether, dried under vacuum to give the (I) (3.34 g, 95% yield). Spectroscopic analysis: IR (KBr, cm-1): ν(BH) 2467 cm-1; ν(NH) 3312 cm-1. The 1H NMR (CDCl3, 303 K, d, p.p.m.): δ 5.67 (t, JHH = 2.0 Hz, 1H, Tp), 5.78 (t, 1H, JHH = 2.0 Hz, Tp), 5.95 (d, 1H, JHH = 2.0 Hz, Tp), 6.11 (t, 1H, JHH = 2.0 Hz, Tp), 6.45 (d, 1H, JHH = 2.0 Hz, Tp), 6.73–7.70 (Ph, Tp), 8.13 (d, 1H, JHH = 2.0 Hz, Tp), 12.45 (s, 1H, HN). The 13C NMR (CDCl3, 303 K, d, p.p.m.): 105.2–148.4 (m, Ph, PPh3, Tp), 179.9 (s, HN═C (Ph)2). The 31P NMR (CDCl3, 303 K, d, p.p.m.): d 51.3. The MS (m/z, Ru 102): 793.2 (M+),758.1 (M+ - Cl), 612.2 (M+ - HN═C (Ph)2). Anal. Calc. for C40H36BClN7PRu, (%): C, 60.58; H,4.58; N, 12.36. Found (%): C, 60.43; H, 4.61; N, 12.42. The bright-yellow crystals of (I) for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether containing free benzophenone imine.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), B—H = 1.10 Å and Uiso(H) = 1.2Ueq(B).

Figures

Fig. 1.
The molecular structure of (I) showing atoms numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are drawn with arbitrary radius.

Crystal data

[Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10OF(000) = 1792
Mr = 867.18Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 61738 reflections
a = 9.3768 (1) Åθ = 1–27.5°
b = 30.1803 (5) ŵ = 0.52 mm1
c = 14.9092 (2) ÅT = 295 K
β = 96.126 (1)°Plate, yellow
V = 4195.13 (10) Å30.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer9587 independent reflections
Radiation source: fine-focus sealed tube7313 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SORTAV; Blessing, 1995)h = −12→12
Tmin = 0.915, Tmax = 0.952k = −38→39
28699 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0492P)2 + 2.3324P] where P = (Fo2 + 2Fc2)/3
9587 reflections(Δ/σ)max < 0.001
505 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.29312 (2)0.099417 (7)0.750725 (14)0.03648 (7)
Cl10.44869 (8)0.14260 (3)0.66246 (5)0.05512 (19)
P10.22862 (8)0.15893 (2)0.83575 (5)0.04520 (17)
N10.3739 (2)0.00419 (7)0.72037 (16)0.0441 (5)
N20.3456 (2)0.04306 (8)0.67632 (14)0.0419 (5)
N30.2246 (2)0.01635 (7)0.84529 (15)0.0418 (5)
N40.1670 (2)0.05607 (7)0.81661 (14)0.0378 (5)
N50.4838 (2)0.03736 (7)0.86467 (15)0.0423 (5)
N60.4675 (2)0.08098 (7)0.84144 (15)0.0409 (5)
N70.1440 (2)0.11552 (8)0.64377 (15)0.0450 (5)
H7A0.17170.13990.62150.054*
B10.3757 (3)0.00265 (10)0.8237 (2)0.0450 (7)
H10.4047−0.03060.84980.054*
C10.3922 (3)−0.02816 (11)0.6606 (2)0.0563 (8)
H1A0.4122−0.05770.67450.068*
C20.3764 (3)−0.01009 (12)0.5761 (2)0.0620 (9)
H2A0.3831−0.02460.52170.074*
C30.3483 (3)0.03437 (12)0.5884 (2)0.0535 (7)
H3A0.33340.05520.54240.064*
C40.1277 (3)−0.00731 (10)0.88551 (19)0.0498 (7)
H4A0.1419−0.03540.91060.060*
C50.0039 (3)0.01730 (10)0.8830 (2)0.0513 (7)
H5A−0.08120.00940.90570.062*
C60.0332 (3)0.05626 (10)0.83963 (18)0.0439 (6)
H6A−0.03150.07940.82810.053*
C70.6081 (3)0.03204 (11)0.9177 (2)0.0525 (7)
H7B0.64290.00550.94290.063*
C80.6744 (3)0.07213 (11)0.9282 (2)0.0573 (8)
H8A0.76210.07830.96100.069*
C90.5838 (3)0.10188 (10)0.8796 (2)0.0506 (7)
H9A0.60150.13200.87440.061*
C100.0270 (3)0.10422 (9)0.59664 (18)0.0432 (6)
C11−0.0235 (3)0.12837 (10)0.51180 (19)0.0482 (7)
C120.0215 (4)0.17094 (12)0.4950 (2)0.0665 (9)
H12A0.08220.18560.53860.080*
C13−0.0224 (5)0.19198 (14)0.4145 (3)0.0849 (12)
H13A0.00980.22050.40390.102*
C14−0.1128 (5)0.17104 (17)0.3507 (3)0.0962 (14)
H14A−0.14370.18540.29700.115*
C15−0.1579 (5)0.12930 (18)0.3653 (3)0.1075 (18)
H15A−0.21780.11490.32080.129*
C16−0.1153 (4)0.10794 (14)0.4459 (2)0.0787 (12)
H16A−0.14900.07960.45580.094*
C17−0.0629 (3)0.06701 (10)0.62470 (17)0.0429 (6)
C18−0.2001 (3)0.07601 (11)0.6479 (2)0.0524 (7)
H18A−0.23590.10470.64300.063*
C19−0.2831 (3)0.04240 (13)0.6781 (2)0.0605 (8)
H19A−0.37310.04880.69570.073*
C20−0.2333 (4)−0.00019 (13)0.6822 (2)0.0670 (9)
H20A−0.2892−0.02270.70270.080*
C21−0.0998 (4)−0.00975 (12)0.6560 (2)0.0638 (8)
H21A−0.0674−0.03890.65710.077*
C22−0.0140 (3)0.02370 (10)0.6281 (2)0.0515 (7)
H22A0.07660.01710.61170.062*
C230.1486 (3)0.14282 (11)0.9387 (2)0.0568 (8)
C240.2256 (4)0.11179 (12)0.9944 (2)0.0674 (9)
H24A0.31070.10030.97730.081*
C250.1776 (6)0.09801 (14)1.0740 (3)0.0893 (14)
H25A0.23160.07811.11100.107*
C260.0504 (7)0.11364 (18)1.0985 (3)0.1055 (19)
H26A0.01690.10391.15160.127*
C27−0.0279 (5)0.14388 (18)1.0444 (3)0.0978 (16)
H27A−0.11450.15431.06120.117*
C280.0211 (4)0.15916 (13)0.9643 (3)0.0746 (10)
H28A−0.03150.18000.92880.090*
C290.3590 (3)0.20070 (10)0.8864 (2)0.0547 (7)
C300.3323 (4)0.22422 (11)0.9633 (2)0.0710 (9)
H30A0.24910.21870.99020.085*
C310.4288 (6)0.25585 (13)1.0002 (3)0.0899 (13)
H31A0.40910.27151.05110.108*
C320.5529 (6)0.26417 (14)0.9621 (3)0.0970 (14)
H32A0.61860.28480.98800.116*
C330.5794 (4)0.24191 (13)0.8856 (3)0.0882 (13)
H33A0.66270.24780.85900.106*
C340.4823 (4)0.21035 (11)0.8474 (3)0.0691 (9)
H34A0.50090.19570.79500.083*
C350.0942 (3)0.19466 (10)0.7724 (2)0.0546 (7)
C360.1355 (4)0.23402 (11)0.7351 (2)0.0665 (9)
H36A0.22950.24400.74750.080*
C370.0374 (5)0.25872 (13)0.6794 (3)0.0859 (12)
H37A0.06620.28500.65430.103*
C38−0.1033 (5)0.24445 (14)0.6609 (3)0.0886 (13)
H38A−0.16880.26130.62410.106*
C39−0.1453 (4)0.20575 (14)0.6968 (3)0.0815 (12)
H39A−0.23970.19620.68490.098*
C40−0.0466 (4)0.18051 (12)0.7515 (2)0.0677 (9)
H40A−0.07530.15370.77430.081*
O10.4596 (3)0.13805 (11)0.2598 (2)0.0970 (9)
C440.5827 (5)0.1501 (2)0.1320 (3)0.128 (2)
H44A0.59090.17000.08260.192*
H44B0.55510.12130.10900.192*
H44C0.67340.14810.16840.192*
C420.3529 (6)0.15112 (18)0.3139 (3)0.1105 (16)
H42A0.25930.14840.27990.133*
H42B0.36710.18190.33130.133*
C430.4733 (6)0.16682 (17)0.1874 (3)0.1003 (14)
H43A0.50050.19610.21020.120*
H43B0.38190.16930.15060.120*
C410.3591 (7)0.12344 (18)0.3947 (4)0.136 (2)
H41A0.28590.13260.43110.204*
H41B0.45140.12650.42870.204*
H41C0.34380.09300.37750.204*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.03305 (11)0.03839 (12)0.03758 (12)−0.00223 (8)0.00183 (8)0.00409 (9)
Cl10.0477 (4)0.0613 (4)0.0563 (4)−0.0130 (3)0.0054 (3)0.0137 (4)
P10.0461 (4)0.0396 (4)0.0488 (4)0.0000 (3)−0.0001 (3)−0.0003 (3)
N10.0406 (11)0.0418 (12)0.0508 (13)−0.0015 (9)0.0092 (10)−0.0054 (10)
N20.0369 (11)0.0504 (13)0.0390 (12)−0.0029 (9)0.0063 (9)0.0000 (10)
N30.0404 (11)0.0404 (12)0.0448 (12)−0.0011 (9)0.0044 (9)0.0060 (10)
N40.0360 (11)0.0412 (12)0.0363 (11)−0.0017 (9)0.0043 (9)0.0005 (9)
N50.0386 (11)0.0438 (12)0.0439 (12)0.0035 (9)0.0016 (9)0.0038 (10)
N60.0372 (11)0.0418 (12)0.0427 (12)0.0007 (9)0.0005 (9)0.0019 (10)
N70.0414 (12)0.0460 (12)0.0465 (13)−0.0009 (10)0.0001 (10)0.0072 (11)
B10.0433 (16)0.0391 (16)0.0526 (19)0.0013 (13)0.0052 (14)0.0029 (14)
C10.0502 (16)0.0511 (17)0.069 (2)−0.0068 (13)0.0149 (15)−0.0159 (16)
C20.0540 (18)0.078 (2)0.057 (2)−0.0110 (16)0.0188 (15)−0.0245 (18)
C30.0421 (15)0.076 (2)0.0433 (16)−0.0072 (14)0.0098 (12)−0.0031 (15)
C40.0509 (16)0.0510 (16)0.0479 (16)−0.0085 (13)0.0077 (13)0.0127 (13)
C50.0429 (15)0.0633 (19)0.0490 (16)−0.0072 (13)0.0113 (12)0.0066 (14)
C60.0356 (13)0.0535 (16)0.0429 (15)−0.0007 (12)0.0064 (11)−0.0003 (13)
C70.0430 (15)0.0604 (19)0.0519 (17)0.0084 (13)−0.0049 (12)0.0095 (14)
C80.0436 (15)0.066 (2)0.0584 (19)−0.0009 (14)−0.0125 (13)0.0009 (16)
C90.0435 (15)0.0518 (17)0.0544 (17)−0.0049 (12)−0.0051 (13)−0.0031 (14)
C100.0361 (13)0.0507 (16)0.0426 (15)0.0009 (11)0.0029 (11)−0.0010 (12)
C110.0421 (14)0.0578 (18)0.0438 (16)−0.0002 (13)−0.0001 (12)0.0047 (13)
C120.077 (2)0.060 (2)0.059 (2)−0.0028 (17)−0.0089 (17)0.0092 (16)
C130.109 (3)0.066 (2)0.076 (3)−0.006 (2)−0.005 (2)0.027 (2)
C140.101 (3)0.112 (4)0.069 (3)−0.015 (3)−0.023 (2)0.040 (3)
C150.111 (3)0.130 (4)0.070 (3)−0.048 (3)−0.040 (2)0.038 (3)
C160.082 (2)0.087 (3)0.061 (2)−0.030 (2)−0.0195 (19)0.0201 (19)
C170.0364 (13)0.0546 (16)0.0371 (14)−0.0053 (11)0.0009 (10)0.0007 (12)
C180.0389 (14)0.0646 (19)0.0532 (17)0.0003 (13)0.0030 (12)−0.0012 (15)
C190.0405 (15)0.086 (3)0.0557 (19)−0.0097 (16)0.0075 (13)−0.0034 (17)
C200.0551 (19)0.079 (2)0.067 (2)−0.0256 (17)0.0054 (16)0.0059 (18)
C210.0590 (19)0.0575 (19)0.074 (2)−0.0086 (15)0.0038 (16)0.0031 (17)
C220.0406 (14)0.0577 (18)0.0564 (18)−0.0026 (13)0.0055 (13)−0.0014 (14)
C230.0644 (19)0.0540 (18)0.0530 (18)−0.0114 (15)0.0114 (15)−0.0116 (15)
C240.095 (3)0.060 (2)0.0480 (18)−0.0119 (18)0.0096 (17)−0.0069 (16)
C250.139 (4)0.080 (3)0.051 (2)−0.026 (3)0.020 (2)−0.0063 (19)
C260.157 (5)0.098 (4)0.068 (3)−0.066 (4)0.045 (3)−0.023 (3)
C270.102 (3)0.104 (4)0.097 (3)−0.046 (3)0.052 (3)−0.054 (3)
C280.077 (2)0.071 (2)0.079 (2)−0.0156 (19)0.0226 (19)−0.027 (2)
C290.0590 (18)0.0418 (15)0.0600 (19)−0.0033 (13)−0.0083 (14)0.0013 (14)
C300.089 (2)0.055 (2)0.066 (2)−0.0126 (18)−0.0081 (18)−0.0034 (17)
C310.125 (4)0.065 (2)0.074 (3)−0.014 (2)−0.017 (3)−0.016 (2)
C320.109 (3)0.065 (3)0.108 (4)−0.030 (2)−0.033 (3)−0.005 (3)
C330.078 (3)0.061 (2)0.122 (4)−0.0238 (19)−0.006 (2)−0.002 (2)
C340.068 (2)0.0486 (18)0.088 (3)−0.0090 (16)−0.0022 (18)−0.0045 (17)
C350.0554 (17)0.0479 (17)0.0583 (18)0.0112 (13)−0.0046 (14)−0.0091 (14)
C360.077 (2)0.0504 (18)0.070 (2)0.0082 (16)−0.0056 (17)0.0031 (16)
C370.112 (3)0.057 (2)0.083 (3)0.017 (2)−0.014 (2)0.007 (2)
C380.097 (3)0.072 (3)0.090 (3)0.035 (2)−0.024 (2)−0.007 (2)
C390.063 (2)0.080 (3)0.096 (3)0.0233 (19)−0.018 (2)−0.018 (2)
C400.061 (2)0.056 (2)0.082 (2)0.0105 (16)−0.0078 (17)−0.0080 (18)
O10.105 (2)0.110 (2)0.0786 (19)0.0160 (18)0.0204 (16)0.0066 (18)
C440.099 (4)0.197 (6)0.090 (3)0.006 (4)0.019 (3)0.020 (4)
C420.131 (4)0.104 (4)0.098 (4)0.019 (3)0.020 (3)−0.021 (3)
C430.113 (4)0.105 (4)0.081 (3)−0.007 (3)0.002 (3)−0.003 (3)
C410.210 (7)0.095 (4)0.115 (4)0.027 (4)0.075 (4)0.007 (3)

Geometric parameters (Å, °)

Ru1—N72.063 (2)C18—H18A0.9300
Ru1—N42.079 (2)C19—C201.367 (5)
Ru1—N62.084 (2)C19—H19A0.9300
Ru1—N22.117 (2)C20—C211.381 (5)
Ru1—P12.3158 (8)C20—H20A0.9300
Ru1—Cl12.4429 (7)C21—C221.382 (4)
Ru1—B13.183 (3)C21—H21A0.9300
P1—C351.841 (3)C22—H22A0.9300
P1—C231.844 (3)C23—C281.384 (5)
P1—C291.859 (3)C23—C241.400 (5)
N1—C11.345 (4)C24—C251.378 (5)
N1—N21.357 (3)C24—H24A0.9300
N1—B11.539 (4)C25—C261.368 (7)
N2—C31.340 (3)C25—H25A0.9300
N3—C41.346 (3)C26—C271.377 (7)
N3—N41.365 (3)C26—H26A0.9300
N3—B11.542 (4)C27—C281.403 (6)
N4—C61.335 (3)C27—H27A0.9300
N5—C71.346 (3)C28—H28A0.9300
N5—N61.366 (3)C29—C341.379 (5)
N5—B11.538 (4)C29—C301.393 (5)
N6—C91.333 (3)C30—C311.388 (5)
N7—C101.284 (3)C30—H30A0.9300
N7—H7A0.8600C31—C321.372 (6)
B1—H11.1000C31—H31A0.9300
C1—C21.367 (5)C32—C331.368 (6)
C1—H1A0.9300C32—H32A0.9300
C2—C31.384 (5)C33—C341.397 (5)
C2—H2A0.9300C33—H33A0.9300
C3—H3A0.9300C34—H34A0.9300
C4—C51.375 (4)C35—C361.384 (5)
C4—H4A0.9300C35—C401.390 (4)
C5—C61.384 (4)C36—C371.390 (5)
C5—H5A0.9300C36—H36A0.9300
C6—H6A0.9300C37—C381.387 (6)
C7—C81.362 (4)C37—H37A0.9300
C7—H7B0.9300C38—C391.360 (6)
C8—C91.386 (4)C38—H38A0.9300
C8—H8A0.9300C39—C401.393 (5)
C9—H9A0.9300C39—H39A0.9300
C10—C171.491 (4)C40—H40A0.9300
C10—C111.493 (4)O1—C431.403 (5)
C11—C161.380 (4)O1—C421.406 (5)
C11—C121.383 (4)C44—C431.472 (6)
C12—C131.381 (5)C44—H44A0.9600
C12—H12A0.9300C44—H44B0.9600
C13—C141.360 (6)C44—H44C0.9600
C13—H13A0.9300C42—C411.462 (7)
C14—C151.354 (6)C42—H42A0.9700
C14—H14A0.9300C42—H42B0.9700
C15—C161.385 (5)C43—H43A0.9700
C15—H15A0.9300C43—H43B0.9700
C16—H16A0.9300C41—H41A0.9600
C17—C221.384 (4)C41—H41B0.9600
C17—C181.394 (4)C41—H41C0.9600
C18—C191.383 (4)
N7—Ru1—N498.08 (8)C16—C15—H15A119.8
N7—Ru1—N6169.96 (9)C11—C16—C15120.6 (4)
N4—Ru1—N688.39 (8)C11—C16—H16A119.7
N7—Ru1—N287.74 (9)C15—C16—H16A119.7
N4—Ru1—N285.29 (8)C22—C17—C18119.0 (3)
N6—Ru1—N285.14 (8)C22—C17—C10121.8 (2)
N7—Ru1—P192.60 (7)C18—C17—C10119.2 (3)
N4—Ru1—P191.98 (6)C19—C18—C17120.3 (3)
N6—Ru1—P194.85 (6)C19—C18—H18A119.9
N2—Ru1—P1177.26 (6)C17—C18—H18A119.9
N7—Ru1—Cl181.51 (6)C20—C19—C18120.2 (3)
N4—Ru1—Cl1173.03 (6)C20—C19—H19A119.9
N6—Ru1—Cl191.13 (6)C18—C19—H19A119.9
N2—Ru1—Cl187.75 (6)C19—C20—C21120.0 (3)
P1—Ru1—Cl194.99 (3)C19—C20—H20A120.0
N7—Ru1—B1126.89 (9)C21—C20—H20A120.0
N4—Ru1—B152.49 (8)C20—C21—C22120.4 (3)
N6—Ru1—B152.24 (8)C20—C21—H21A119.8
N2—Ru1—B151.71 (8)C22—C21—H21A119.8
P1—Ru1—B1126.35 (6)C21—C22—C17120.0 (3)
Cl1—Ru1—B1122.41 (6)C21—C22—H22A120.0
C35—P1—C23105.29 (15)C17—C22—H22A120.0
C35—P1—C29101.29 (14)C28—C23—C24118.7 (3)
C23—P1—C2998.59 (14)C28—C23—P1125.2 (3)
C35—P1—Ru1112.22 (10)C24—C23—P1116.1 (3)
C23—P1—Ru1113.85 (10)C25—C24—C23121.2 (4)
C29—P1—Ru1123.32 (11)C25—C24—H24A119.4
C1—N1—N2109.8 (2)C23—C24—H24A119.4
C1—N1—B1130.7 (3)C26—C25—C24120.0 (5)
N2—N1—B1119.4 (2)C26—C25—H25A120.0
C3—N2—N1106.3 (2)C24—C25—H25A120.0
C3—N2—Ru1134.4 (2)C25—C26—C27119.9 (4)
N1—N2—Ru1119.04 (16)C25—C26—H26A120.1
C4—N3—N4110.0 (2)C27—C26—H26A120.1
C4—N3—B1129.0 (2)C26—C27—C28120.9 (4)
N4—N3—B1120.8 (2)C26—C27—H27A119.5
C6—N4—N3105.9 (2)C28—C27—H27A119.5
C6—N4—Ru1135.73 (19)C23—C28—C27119.3 (4)
N3—N4—Ru1118.33 (15)C23—C28—H28A120.4
C7—N5—N6109.3 (2)C27—C28—H28A120.4
C7—N5—B1130.1 (2)C34—C29—C30118.1 (3)
N6—N5—B1120.3 (2)C34—C29—P1121.1 (3)
C9—N6—N5106.5 (2)C30—C29—P1120.8 (3)
C9—N6—Ru1134.4 (2)C31—C30—C29120.7 (4)
N5—N6—Ru1118.73 (16)C31—C30—H30A119.7
C10—N7—Ru1146.0 (2)C29—C30—H30A119.7
C10—N7—H7A107.0C32—C31—C30120.5 (4)
Ru1—N7—H7A107.0C32—C31—H31A119.8
N5—B1—N1108.3 (2)C30—C31—H31A119.8
N5—B1—N3108.4 (2)C33—C32—C31119.5 (4)
N1—B1—N3106.8 (2)C33—C32—H32A120.2
N5—B1—Ru168.71 (14)C31—C32—H32A120.2
N1—B1—Ru169.76 (14)C32—C33—C34120.4 (4)
N3—B1—Ru168.29 (14)C32—C33—H33A119.8
N5—B1—H1110.7C34—C33—H33A119.8
N1—B1—H1111.0C29—C34—C33120.7 (4)
N3—B1—H1111.6C29—C34—H34A119.6
Ru1—B1—H1179.2C33—C34—H34A119.6
N1—C1—C2108.2 (3)C36—C35—C40118.2 (3)
N1—C1—H1A125.9C36—C35—P1120.2 (2)
C2—C1—H1A125.9C40—C35—P1121.1 (3)
C1—C2—C3105.5 (3)C35—C36—C37120.3 (4)
C1—C2—H2A127.2C35—C36—H36A119.9
C3—C2—H2A127.2C37—C36—H36A119.9
N2—C3—C2110.1 (3)C38—C37—C36120.5 (4)
N2—C3—H3A125.0C38—C37—H37A119.8
C2—C3—H3A125.0C36—C37—H37A119.8
N3—C4—C5108.0 (3)C39—C38—C37119.8 (4)
N3—C4—H4A126.0C39—C38—H38A120.1
C5—C4—H4A126.0C37—C38—H38A120.1
C4—C5—C6105.2 (2)C38—C39—C40119.9 (4)
C4—C5—H5A127.4C38—C39—H39A120.1
C6—C5—H5A127.4C40—C39—H39A120.1
N4—C6—C5110.8 (2)C35—C40—C39121.3 (4)
N4—C6—H6A124.6C35—C40—H40A119.4
C5—C6—H6A124.6C39—C40—H40A119.4
N5—C7—C8108.5 (3)C43—O1—C42113.4 (4)
N5—C7—H7B125.7C43—C44—H44A109.5
C8—C7—H7B125.7C43—C44—H44B109.5
C7—C8—C9105.6 (3)H44A—C44—H44B109.5
C7—C8—H8A127.2C43—C44—H44C109.5
C9—C8—H8A127.2H44A—C44—H44C109.5
N6—C9—C8110.1 (3)H44B—C44—H44C109.5
N6—C9—H9A124.9O1—C42—C41110.2 (4)
C8—C9—H9A124.9O1—C42—H42A109.6
N7—C10—C17121.5 (2)C41—C42—H42A109.6
N7—C10—C11120.6 (2)O1—C42—H42B109.6
C17—C10—C11117.9 (2)C41—C42—H42B109.6
C16—C11—C12117.7 (3)H42A—C42—H42B108.1
C16—C11—C10120.1 (3)O1—C43—C44110.3 (4)
C12—C11—C10122.1 (3)O1—C43—H43A109.6
C13—C12—C11121.1 (3)C44—C43—H43A109.6
C13—C12—H12A119.5O1—C43—H43B109.6
C11—C12—H12A119.5C44—C43—H43B109.6
C14—C13—C12120.0 (4)H43A—C43—H43B108.1
C14—C13—H13A120.0C42—C41—H41A109.5
C12—C13—H13A120.0C42—C41—H41B109.5
C15—C14—C13120.2 (4)H41A—C41—H41B109.5
C15—C14—H14A119.9C42—C41—H41C109.5
C13—C14—H14A119.9H41A—C41—H41C109.5
C14—C15—C16120.4 (4)H41B—C41—H41C109.5
C14—C15—H15A119.8

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2110).

References

  • Albertin, G., Antoniutti, S. & Magaton, A. (2008). Inorg. Chim. Acta, 361, 1744–1753.
  • Alock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem.31, 2906–2908.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bohanna, C., Esteruelas, M. A., López, A. M. & Oro, L. A. (1996). J. Organomet. Chem.526, 73–83.
  • Burrows, A. D. (2001). CrystEngComm, 46, 1–5.
  • Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.
  • Harman, W. D. & Tube, H. (1988). Inorg. Chem.27, 3261–3262.
  • Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561–3575.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography