PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1476–m1477.
Published online 2008 October 31. doi:  10.1107/S1600536808031814
PMCID: PMC2959637

Sodium 2-mercaptoethanesulfonate monohydrate (coenzyme M sodium salt monohydrate)

Abstract

The 2-thio­ethanesulfonate anion is the smallest known coenzyme in nature (HS–CoM) and plays a key role in methano­genesis by anaerobic archaea, as well as in the oxidation of alkenes by Gram-negative and Gram-positive eubacteria. The title compound, Na+·C2H5O3S2 ·H2O, is the Na+ salt of HS–CoM crystallized as the monohydrate. Six O atoms form a distorted octa­hedral coordination geometry around the Na atom, at distances in the range 2.312 (4)–2.517 (3) Å. Two O atoms of the sulfonate group, one O atom of each of three other symmetry-related sulfonate groups plus the water O atom form the coordination environment of the Na+ ion. This arrangement forms Na–O–Na layers in the crystal structure, parallel to (100).

Related literature

For related literature about HS–CoM, see: Allen et al. (1999 [triangle]); Bruchhausen et al. (1993 [triangle]); Günther & Hattendorf (2005 [triangle]); Graham et al. (2002 [triangle]); Latkoczy & Günther (2002 [triangle]); Mackay et al. (1999 [triangle]); Schramm et al. (1955 [triangle]); Thauer (1998 [triangle]). For the structure of the unhydrated Na HS–CoM salt, see: Bambagiotti-Alberti et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1476-scheme1.jpg

Experimental

Crystal data

  • Na+·C2H5O3S2 ·H2O
  • M r = 182.19
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1476-efi9.jpg
  • a = 23.4301 (8) Å
  • b = 5.0324 (2) Å
  • c = 6.1254 (2) Å
  • V = 722.24 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 223 K
  • 0.26 × 0.20 × 0.01 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 1647 measured reflections
  • 1534 independent reflections
  • 1263 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.131
  • S = 0.95
  • 1534 reflections
  • 88 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 627 Friedel pairs
  • Flack parameter: 0.13 (18)

Data collection: KappaCCD Server Software (Nonius, 1997 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek 2003 [triangle]); software used to prepare material for publication: maXus (Mackay et al., 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031814/bh2190sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031814/bh2190Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound includes 2-thioethanesulfonate ion, the smallest known coenzyme in nature, coenzyme M, which plays a key role in methanogenesis by anaerobic archaea (Thauer, 1998) and in the oxidation of alkenes by gram-negative and gram-positive eubacteria (Allen et al., 1999). Furthermore its sodium salt (mesna) is medically used as mucolytics and to prevent urotoxic side effects of certain anticancer drugs (Bruchhausen et al., 1993). Whereas the biosynthesis of coenzyme M starts by sulfitation of phosphoenolpyruvate (Graham et al., 2002), the chemical synthesis begins from sodium 2-bromoethanesulfonate and thiourea in ammoniacal solution (Bruchhausen et al., 1993). Since 2-thioethanesulfonic acid represents a highly viscous oil decomposing under release of hydrogen sulfide at room temperature, it is usually stored and sold as stable sodium or ammonium salt (Schramm et al., 1955). The title compound is the monohydrate of the sodium salt.

Six O atoms show a distorted octahedral coordination geometry around the Na atom at distances in the range of 2.312 (4)–2.517 (3) Å (Fig. 1). Two O atoms of a SO3 group and one O of three other SO3 groups plus the water O atom form the coordination sphere of the Na+ ion. This forms Na–O–Na layers parallel to (100) in the crystal (Fig. 2).

The crystal structure of the unhydrated form (Bambagiotti-Alberti et al., 2007; CSD refcode UDUVUL) shows a similar six-fold coordination of the Na atom where the water O atom is replaced by an O-atom of a SO3 group. The conformation of the S atoms is antiperiplanar in our compound and gauche in the unhydrated form.

Experimental

When adding pure ethanol to a concentrated solution of 2-thioethanesulfonic acid in water, we noticed a precipitating white crystalline mass never described before in the literature. Micro elementary analysis based on the empirical formula (C2H8O4S2) of the hydrated acid (HS–CoM-H3O+) showed significantly low values for C and H. At the same time 1H and 13C NMR analysis of the precipitate in D2O ruled out any organic impurities. Investigations into the crystals by laser ablation inductively coupled plasma sector field mass spectrometry (LA-ICP-SF MS), however, clearly revealed the presence of sodium in hyperstoichiometric amounts: molar ratio (Na-23)/(S-32) = 1.34 (RSD: 8,5%, n = 9) (Günther & Hattendorf, 2005; Latkoczy & Günther, 2002). The white precipitate consisted of two different types of crystals, needles and thin plates. The needles were used for structure analysis by X-ray diffraction.

Refinement

H-positions for the methylene CH2 groups have been calculated with fixed distance of 1.08 Å. H atoms for the water molecule and the thiol group have been taken from a difference map and were included in the refinement in their as-found positions.

Figures

Fig. 1.
The molecular structure of sodium 2-thioethanesulfonate hydrate with 50% probability displacement ellipsoids. H atoms are omitted for clarity. The complete coordination of the Na atom is shown. Symmetry codes: (a) x, -1+y, z; (b) x, 1+y, z; (c) 1/2-x, ...
Fig. 2.
Crystal structure viewed down the diagonal of the a–b axis, showing the layer structure of Na—O clusters.

Crystal data

Na+·C2H5O3S2·H2ODx = 1.676 Mg m3
Mr = 182.19Melting point: 473 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5975 reflections
a = 23.4301 (8) Åθ = 2.3–27.5°
b = 5.0324 (2) ŵ = 0.74 mm1
c = 6.1254 (2) ÅT = 223 K
V = 722.24 (4) Å3Plate, colourless
Z = 40.26 × 0.20 × 0.01 mm
F(000) = 376.0

Data collection

Nonius KappaCCD diffractometerRint = 0.065
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.4°
CCD scansh = −29→30
1647 measured reflectionsk = −6→6
1534 independent reflectionsl = −7→7
1263 reflections with I > 2σ(I)

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.131w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1534 reflectionsΔρmax = 0.25 e Å3
88 parametersΔρmin = −0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 627 Friedel pairs
0 constraintsFlack parameter: 0.13 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S3−0.00830 (4)0.7465 (2)0.8298 (4)0.0483 (4)
H3−0.01540.85420.68130.058*
S40.17410 (3)0.75424 (11)0.66676 (19)0.0185 (2)
Na90.26442 (4)0.3309 (2)0.6658 (4)0.0238 (3)
O50.19813 (10)0.6264 (6)0.4720 (5)0.0239 (7)
O60.18238 (8)1.0402 (4)0.6710 (8)0.0286 (5)
O70.33586 (10)0.6737 (5)0.6717 (8)0.0338 (5)
H10.32590.80980.75950.023 (11)*
H20.33740.74650.53320.047 (16)*
O80.19475 (10)0.6245 (6)0.8649 (5)0.0257 (7)
C10.06798 (17)0.8051 (9)0.8424 (9)0.0464 (11)
H1A0.07561.01660.85090.056*
H1B0.08460.71690.99000.056*
C20.09943 (14)0.6946 (6)0.6517 (10)0.0279 (8)
H2A0.08290.78270.50390.033*
H2B0.09200.48300.64310.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S30.0235 (5)0.0688 (8)0.0526 (8)−0.0031 (4)0.0074 (6)0.0024 (6)
S40.0182 (4)0.0178 (4)0.0194 (4)−0.00146 (19)0.0008 (4)0.0002 (7)
Na90.0267 (6)0.0228 (6)0.0219 (6)0.0034 (4)−0.0009 (9)−0.0004 (10)
O50.0302 (16)0.0223 (15)0.0191 (18)−0.0013 (11)0.0050 (14)−0.0031 (12)
O60.0325 (10)0.0188 (10)0.0344 (12)−0.0029 (8)0.0011 (17)−0.003 (2)
O70.0398 (13)0.0345 (11)0.0271 (13)0.0012 (10)0.004 (2)−0.005 (2)
O80.0301 (16)0.0271 (17)0.0197 (18)0.0020 (12)−0.0011 (13)−0.0027 (14)
C10.0228 (17)0.063 (3)0.053 (3)−0.0050 (17)0.010 (2)−0.013 (3)
C20.0182 (14)0.0364 (16)0.029 (2)−0.0033 (12)−0.001 (2)−0.008 (2)

Geometric parameters (Å, °)

S3—C11.813 (4)Na9—Na9i4.0207 (5)
S3—H31.0714Na9—Na9ii4.0207 (5)
S4—O61.4522 (19)Na9—Na9v4.0207 (5)
S4—O81.460 (4)O5—Na9v2.312 (4)
S4—O51.468 (3)O6—Na9vi2.416 (2)
S4—C21.778 (3)O7—H10.9012
S4—Na93.0028 (13)O7—H20.9247
Na9—O5i2.312 (4)O8—Na9iv2.322 (4)
Na9—O8ii2.322 (4)C1—C21.489 (6)
Na9—O72.404 (3)C1—H1A1.0800
Na9—O6iii2.416 (2)C1—H1B1.0800
Na9—O52.456 (3)C2—H2A1.0800
Na9—O82.517 (3)C2—H2B1.0800
Na9—Na9iv4.0207 (5)
C1—S3—H396.1O8—Na9—Na9i83.64 (8)
O6—S4—O8112.6 (2)S4—Na9—Na9i108.91 (6)
O6—S4—O5113.4 (2)Na9iv—Na9—Na9i77.477 (11)
O8—S4—O5110.64 (11)O5i—Na9—Na9ii113.78 (8)
O6—S4—C2107.43 (13)O8ii—Na9—Na9ii35.38 (7)
O8—S4—C2107.1 (2)O7—Na9—Na9ii125.28 (13)
O5—S4—C2105.2 (2)O6iii—Na9—Na9ii59.83 (11)
O6—S4—Na9127.52 (9)O5—Na9—Na9ii84.52 (8)
O8—S4—Na956.70 (12)O8—Na9—Na9ii128.86 (8)
O5—S4—Na954.35 (12)S4—Na9—Na9ii109.09 (5)
C2—S4—Na9125.01 (11)Na9iv—Na9—Na9ii160.65 (6)
O5i—Na9—O8ii106.77 (8)Na9i—Na9—Na9ii99.226 (14)
O5i—Na9—O792.45 (14)O5i—Na9—Na9v163.76 (8)
O8ii—Na9—O792.65 (14)O8ii—Na9—Na9v75.20 (9)
O5i—Na9—O6iii91.25 (13)O7—Na9—Na9v71.31 (12)
O8ii—Na9—O6iii93.87 (12)O6iii—Na9—Na9v104.78 (10)
O7—Na9—O6iii171.25 (9)O5—Na9—Na9v31.43 (7)
O5i—Na9—O5154.34 (14)O8—Na9—Na9v83.84 (8)
O8ii—Na9—O598.49 (14)S4—Na9—Na9v55.88 (5)
O7—Na9—O590.75 (11)Na9iv—Na9—Na9v99.226 (14)
O6iii—Na9—O582.52 (10)Na9i—Na9—Na9v160.65 (6)
O5i—Na9—O896.56 (14)Na9ii—Na9—Na9v77.476 (11)
O8ii—Na9—O8156.12 (14)S4—O5—Na9v127.60 (18)
O7—Na9—O891.32 (12)S4—O5—Na996.60 (16)
O6iii—Na9—O880.38 (10)Na9v—O5—Na9114.93 (10)
O5—Na9—O857.90 (7)S4—O6—Na9vi134.91 (12)
O5i—Na9—S4125.55 (10)Na9—O7—H1112.0
O8ii—Na9—S4127.54 (10)Na9—O7—H2107.3
O7—Na9—S488.94 (7)H1—O7—H2104.9
O6iii—Na9—S482.46 (6)S4—O8—Na9iv126.59 (19)
O5—Na9—S429.05 (8)S4—O8—Na994.29 (16)
O8—Na9—S429.01 (8)Na9iv—O8—Na9112.33 (10)
O5i—Na9—Na9iv74.00 (8)C2—C1—S3113.2 (3)
O8ii—Na9—Na9iv162.52 (8)C2—C1—H1A108.9
O7—Na9—Na9iv69.91 (11)S3—C1—H1A108.9
O6iii—Na9—Na9iv103.59 (10)C2—C1—H1B108.9
O5—Na9—Na9iv83.28 (8)S3—C1—H1B108.9
O8—Na9—Na9iv32.29 (7)H1A—C1—H1B107.8
S4—Na9—Na9iv55.67 (5)C1—C2—S4112.5 (3)
O5i—Na9—Na9i33.64 (7)C1—C2—H2A109.1
O8ii—Na9—Na9i113.20 (9)S4—C2—H2A109.1
O7—Na9—Na9i123.68 (13)C1—C2—H2B109.1
O6iii—Na9—Na9i58.49 (11)S4—C2—H2B109.1
O5—Na9—Na9i129.85 (9)H2A—C2—H2B107.8
O6—S4—Na9—O5i91.9 (3)O8—Na9—O5—S44.61 (8)
O8—S4—Na9—O5i−2.37 (19)Na9iv—Na9—O5—S4−16.81 (12)
O5—S4—Na9—O5i−174.30 (19)Na9i—Na9—O5—S450.69 (17)
C2—S4—Na9—O5i−90.6 (3)Na9ii—Na9—O5—S4148.14 (13)
O6—S4—Na9—O8ii−92.9 (3)Na9v—Na9—O5—S4−137.0 (2)
O8—S4—Na9—O8ii172.8 (2)O5i—Na9—O5—Na9v147.7 (2)
O5—S4—Na9—O8ii0.92 (18)O8ii—Na9—O5—Na9v−42.28 (14)
C2—S4—Na9—O8ii84.6 (3)O7—Na9—O5—Na9v50.50 (18)
O6—S4—Na9—O7−0.3 (3)O6iii—Na9—O5—Na9v−135.11 (15)
O8—S4—Na9—O7−94.6 (2)O8—Na9—O5—Na9v141.6 (2)
O5—S4—Na9—O793.4 (2)S4—Na9—O5—Na9v137.0 (2)
C2—S4—Na9—O7177.2 (2)Na9iv—Na9—O5—Na9v120.17 (13)
O6—S4—Na9—O6iii178.0 (4)Na9i—Na9—O5—Na9v−172.34 (6)
O8—S4—Na9—O6iii83.75 (18)Na9ii—Na9—O5—Na9v−74.88 (13)
O5—S4—Na9—O6iii−88.17 (17)O8—S4—O6—Na9vi67.2 (4)
C2—S4—Na9—O6iii−4.5 (3)O5—S4—O6—Na9vi−59.3 (4)
O6—S4—Na9—O5−93.8 (3)C2—S4—O6—Na9vi−175.1 (4)
O8—S4—Na9—O5171.92 (14)Na9—S4—O6—Na9vi2.7 (5)
C2—S4—Na9—O583.7 (3)O6—S4—O8—Na9iv1.0 (3)
O6—S4—Na9—O894.3 (3)O5—S4—O8—Na9iv129.03 (19)
O5—S4—Na9—O8−171.92 (14)C2—S4—O8—Na9iv−116.9 (2)
C2—S4—Na9—O8−88.2 (3)Na9—S4—O8—Na9iv122.0 (2)
O6—S4—Na9—Na9iv65.9 (3)O6—S4—O8—Na9−121.06 (16)
O8—S4—Na9—Na9iv−28.43 (14)O5—S4—O8—Na97.01 (12)
O5—S4—Na9—Na9iv159.65 (14)C2—S4—O8—Na9121.08 (15)
C2—S4—Na9—Na9iv−116.6 (2)O5i—Na9—O8—S4178.06 (16)
O6—S4—Na9—Na9i125.1 (3)O8ii—Na9—O8—S4−14.1 (4)
O8—S4—Na9—Na9i30.82 (14)O7—Na9—O8—S485.44 (17)
O5—S4—Na9—Na9i−141.11 (14)O6iii—Na9—O8—S4−91.78 (16)
C2—S4—Na9—Na9i−57.4 (2)O5—Na9—O8—S4−4.62 (8)
O6—S4—Na9—Na9ii−127.6 (3)Na9iv—Na9—O8—S4132.6 (2)
O8—S4—Na9—Na9ii138.14 (14)Na9i—Na9—O8—S4−150.81 (13)
O5—S4—Na9—Na9ii−33.78 (14)Na9ii—Na9—O8—S4−54.07 (17)
C2—S4—Na9—Na9ii49.9 (2)Na9v—Na9—O8—S414.40 (12)
O6—S4—Na9—Na9v−68.3 (3)O5i—Na9—O8—Na9iv45.45 (13)
O8—S4—Na9—Na9v−162.63 (14)O8ii—Na9—O8—Na9iv−146.7 (2)
O5—S4—Na9—Na9v25.45 (14)O7—Na9—O8—Na9iv−47.17 (17)
C2—S4—Na9—Na9v109.2 (2)O6iii—Na9—O8—Na9iv135.61 (15)
O6—S4—O5—Na9v−8.3 (3)O5—Na9—O8—Na9iv−137.2 (2)
O8—S4—O5—Na9v−135.9 (2)S4—Na9—O8—Na9iv−132.6 (2)
C2—S4—O5—Na9v108.8 (2)Na9i—Na9—O8—Na9iv76.58 (13)
Na9—S4—O5—Na9v−128.7 (2)Na9ii—Na9—O8—Na9iv173.32 (6)
O6—S4—O5—Na9120.40 (17)Na9v—Na9—O8—Na9iv−118.21 (13)
O8—S4—O5—Na9−7.21 (12)S3—C1—C2—S4179.9 (2)
C2—S4—O5—Na9−122.50 (16)O6—S4—C2—C1−60.6 (4)
O5i—Na9—O5—S410.8 (4)O8—S4—C2—C160.6 (4)
O8ii—Na9—O5—S4−179.26 (15)O5—S4—C2—C1178.3 (3)
O7—Na9—O5—S4−86.47 (18)Na9—S4—C2—C1121.5 (3)
O6iii—Na9—O5—S487.92 (15)

Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) −x+1/2, y−1/2, z−1/2; (iii) x, y−1, z; (iv) −x+1/2, y+1/2, z+1/2; (v) −x+1/2, y+1/2, z−1/2; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2190).

References

  • Allen, J. R., Clark, D. D., Krum, J. G. & Ensign, S. A. (1999). Proc. Natl Acad. Sci. USA, 96, 8432–8437. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bambagiotti-Alberti, M., Bruni, B., Di Vaira, M. & Giannellini, V. (2007). Acta Cryst. E63, o1796.
  • Bruchhausen, F. V., Dannhardt, G. & Ebelet, S. (1993). Editors. Hagers Handbuch der Pharmazeutischen Praxis, Vol. 8, p. 890. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Graham, D. E., Xu, H. & White, R. H. (2002). J. Biol. Chem.277, 13421–13429. [PubMed]
  • Günther, D. & Hattendorf, B. (2005). TrAC Trends Anal. Chem.24, 255–265.
  • Latkoczy, C. & Günther, D. (2002). J. Anal. At. Spectrom.17, 1264–1270.
  • Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.
  • Nonius (1997). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Schramm, C. H., Lemaire, H. & Karlson, R. H. (1955). J. Am. Chem. Soc.77, 6231–6233.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Thauer, R. K. (1998). Microbiology, 144, 2377–2406. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography