PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2202.
Published online 2008 October 25. doi:  10.1107/S1600536808032819
PMCID: PMC2959636

(E)-5,5′-(Diazene-1,2-di­yl)diisophthalic acid N,N-dimethyl­formamide disolvate

Abstract

The title compound, C16H10N2O8·2C3H7NO, was synthesized by the reductive condensation reaction of 5-nitro­isophthalic acid in the presence of NaOH. The tetra-acid mol­ecule, which has a crystallographically imposed centre of symmetry, adopts an E configuration with respect to the azo group. In the crystal packing, mol­ecules are linked through inter­molecular O—H(...)O and C—H(...)O hydrogen-bonding inter­actions, forming chains propagating in [2An external file that holds a picture, illustration, etc.
Object name is e-64-o2202-efi1.jpg0].

Related literature

For general background information on the applications of azo compounds, see: Chung & Stevens (1993 [triangle]); Carliell et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2202-scheme1.jpg

Experimental

Crystal data

  • C16H10N2O8·2C3H7NO
  • M r = 504.45
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2202-efi2.jpg
  • a = 6.2926 (13) Å
  • b = 7.2114 (13) Å
  • c = 13.653 (4) Å
  • α = 80.94 (4)°
  • β = 85.30 (4)°
  • γ = 81.72 (3)°
  • V = 604.3 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.971, T max = 0.979
  • 5593 measured reflections
  • 2363 independent reflections
  • 1607 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.154
  • S = 1.04
  • 2363 reflections
  • 167 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032819/rz2248sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032819/rz2248Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Dr Z.-R. Qu.

supplementary crystallographic information

Comment

Azo compounds are used as dyes in textile, paper manufacturing, pharmaceutial and food industries (Chung & Stevens, 1993; Carliell et al., 1995). Herein, we report the crystal structure of the title compound, which was obtained by reductive condensation reaction of 5-nitroisophthalic acid in the presence of NaOH.

The acid molecule of the title compound (Fig. 1) has a crystallographically imposed centre of symmetry and adopts an E-configuration with respect to the azo group. The molecular conformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal packing (Fig. 2), molecules are linked into layers parallel to the (210) plane by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1).

Experimental

A solution of sodium hydroxide (35.9 g, 0.9 mol) in H2O (125 ml) was added dropwise to a suspension of 5-nitroisophthalic acid (10 g, 50.3 mmol) in H2O (125 ml). The mixture was heated at 50°C for 18 h. After filtration, the yellow solid obtained was dissolved in H2O and acidified with HCl. Crystals suitable for X-ray analysis were obtained after 10 days by slow evaporation of a DMF solution.

Refinement

All H atoms were positioned geometrically and were allowed to ride on their parent atoms, with C—H = 0.93-0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(C, O) or 1.2Ueq(C) for aromatic and aldehyde H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry code: (A) -x+3, -y, -z+1].
Fig. 2.
Packing diagram of the title compound, showing the structure along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C16H10N2O8·2C3H7NOZ = 1
Mr = 504.45F(000) = 264
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2926 (13) ÅCell parameters from 1381 reflections
b = 7.2114 (13) Åθ = 2.9–27.4°
c = 13.653 (4) ŵ = 0.11 mm1
α = 80.94 (4)°T = 293 K
β = 85.30 (4)°Cuboid, colourless
γ = 81.72 (3)°0.20 × 0.20 × 0.20 mm
V = 604.3 (3) Å3

Data collection

Rigaku SCXmini diffractometer2363 independent reflections
Radiation source: fine-focus sealed tube1607 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −8→8
Tmin = 0.971, Tmax = 0.979l = −16→16
5593 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0869P)2 + 0.0094P] where P = (Fo2 + 2Fc2)/3
2363 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.2504 (3)0.1247 (3)0.53879 (14)0.0368 (5)
C21.1485 (3)0.1486 (3)0.63147 (14)0.0388 (5)
H21.22130.10370.68890.047*
C30.9387 (3)0.2393 (3)0.63829 (14)0.0362 (4)
C40.8321 (3)0.3072 (3)0.55177 (14)0.0361 (5)
H40.69090.36640.55580.043*
C50.9357 (3)0.2870 (2)0.45901 (13)0.0340 (4)
C61.1450 (3)0.1962 (2)0.45217 (14)0.0360 (4)
H61.21440.18300.39030.043*
C70.8248 (3)0.3644 (3)0.36581 (14)0.0393 (5)
C80.8253 (3)0.2634 (3)0.73691 (14)0.0429 (5)
C90.5021 (5)0.1873 (5)0.1616 (2)0.0951 (10)
H9A0.65540.18520.15360.143*
H9B0.46890.06330.18940.143*
H9C0.44270.27630.20520.143*
C100.1791 (4)0.2888 (5)0.0659 (2)0.0897 (10)
H10A0.13670.3194−0.00130.135*
H10B0.13370.39530.10030.135*
H10C0.11330.18170.09880.135*
C110.5328 (4)0.2465 (4)−0.01670 (17)0.0583 (6)
H110.46620.2823−0.07640.070*
N11.4637 (2)0.0230 (2)0.54104 (12)0.0396 (4)
N20.4107 (3)0.2433 (3)0.06578 (13)0.0560 (5)
O10.9368 (2)0.1852 (3)0.81263 (10)0.0609 (5)
H10.86280.19570.86430.091*
O20.6425 (2)0.3456 (2)0.74637 (11)0.0587 (5)
O30.6225 (2)0.4372 (2)0.38429 (11)0.0559 (5)
H30.57020.48800.33210.084*
O40.9084 (2)0.3631 (3)0.28388 (11)0.0658 (5)
O50.7304 (3)0.2054 (3)−0.02061 (11)0.0725 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0248 (10)0.0368 (10)0.0480 (12)−0.0002 (7)0.0004 (8)−0.0085 (9)
C20.0308 (10)0.0441 (11)0.0393 (10)0.0020 (8)−0.0022 (8)−0.0062 (9)
C30.0287 (10)0.0376 (10)0.0404 (11)0.0008 (7)0.0016 (8)−0.0067 (8)
C40.0256 (10)0.0376 (10)0.0428 (11)0.0035 (7)0.0003 (8)−0.0074 (8)
C50.0280 (10)0.0340 (9)0.0390 (10)0.0004 (7)0.0000 (7)−0.0077 (8)
C60.0313 (10)0.0375 (10)0.0383 (10)−0.0012 (8)0.0023 (8)−0.0083 (8)
C70.0334 (11)0.0427 (11)0.0401 (11)0.0018 (8)0.0006 (8)−0.0084 (8)
C80.0368 (11)0.0525 (12)0.0356 (11)0.0035 (9)−0.0004 (8)−0.0042 (9)
C90.097 (2)0.142 (3)0.0424 (15)−0.011 (2)−0.0023 (14)−0.0094 (17)
C100.0544 (18)0.110 (2)0.093 (2)0.0092 (15)0.0136 (15)−0.0082 (19)
C110.0547 (15)0.0755 (16)0.0417 (12)0.0016 (12)−0.0043 (10)−0.0081 (11)
N10.0257 (9)0.0437 (9)0.0473 (9)0.0046 (7)0.0009 (7)−0.0097 (8)
N20.0496 (12)0.0716 (13)0.0446 (10)−0.0024 (9)0.0042 (8)−0.0110 (9)
O10.0468 (9)0.0897 (12)0.0349 (8)0.0200 (8)−0.0010 (7)−0.0018 (8)
O20.0395 (9)0.0859 (11)0.0401 (8)0.0211 (8)0.0030 (6)−0.0069 (8)
O30.0372 (9)0.0786 (11)0.0427 (8)0.0188 (7)−0.0053 (6)−0.0032 (8)
O40.0494 (10)0.1019 (13)0.0383 (9)0.0144 (8)0.0017 (7)−0.0113 (9)
O50.0458 (10)0.1218 (16)0.0445 (10)0.0002 (9)0.0043 (7)−0.0103 (10)

Geometric parameters (Å, °)

C1—C61.394 (3)C8—O11.304 (2)
C1—C21.395 (3)C9—N21.447 (3)
C1—N11.434 (2)C9—H9A0.9600
C2—C31.389 (2)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.392 (3)C10—N21.447 (3)
C3—C81.494 (3)C10—H10A0.9600
C4—C51.395 (3)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C5—C61.387 (2)C11—O51.235 (3)
C5—C71.492 (3)C11—N21.309 (3)
C6—H60.9300C11—H110.9300
C7—O41.197 (2)N1—N1i1.251 (3)
C7—O31.325 (2)O1—H10.8200
C8—O21.222 (2)O3—H30.8200
C6—C1—C2120.34 (17)O1—C8—C3114.04 (17)
C6—C1—N1124.35 (17)N2—C9—H9A109.5
C2—C1—N1115.31 (17)N2—C9—H9B109.5
C3—C2—C1120.22 (18)H9A—C9—H9B109.5
C3—C2—H2119.9N2—C9—H9C109.5
C1—C2—H2119.9H9A—C9—H9C109.5
C2—C3—C4119.34 (17)H9B—C9—H9C109.5
C2—C3—C8121.08 (18)N2—C10—H10A109.5
C4—C3—C8119.57 (17)N2—C10—H10B109.5
C3—C4—C5120.42 (17)H10A—C10—H10B109.5
C3—C4—H4119.8N2—C10—H10C109.5
C5—C4—H4119.8H10A—C10—H10C109.5
C6—C5—C4120.25 (17)H10B—C10—H10C109.5
C6—C5—C7118.99 (17)O5—C11—N2124.4 (2)
C4—C5—C7120.75 (16)O5—C11—H11117.8
C5—C6—C1119.40 (18)N2—C11—H11117.8
C5—C6—H6120.3N1i—N1—C1113.5 (2)
C1—C6—H6120.3C11—N2—C10122.1 (2)
O4—C7—O3123.70 (19)C11—N2—C9121.0 (2)
O4—C7—C5124.31 (18)C10—N2—C9116.8 (2)
O3—C7—C5111.99 (17)C8—O1—H1109.5
O2—C8—O1122.62 (18)C7—O3—H3109.5
O2—C8—C3123.32 (18)

Symmetry codes: (i) −x+3, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O30.932.382.704 (3)100
C9—H9A···O50.962.372.763 (3)104
O1—H1···O5ii0.821.722.541 (2)174
O3—H3···O2iii0.821.942.697 (2)154
C4—H4···O3iii0.932.423.305 (2)159
C11—H11···O2iv0.932.583.240 (3)128

Symmetry codes: (ii) x, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2248).

References

  • Carliell, C. M., Barclay, S. J., Naidoo, N., Buckley, C. A., Mulholland, D. A. & Senior, E. (1995). Water SA, 21, 61–69.
  • Chung, K.-T. & Stevens, S. E. Jr (1993). Environ. Toxicol. Chem.2, 2121–2132.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography