PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1377–m1378.
Published online 2008 October 9. doi:  10.1107/S1600536808031887
PMCID: PMC2959631

[(–)-(1S,2S)-N,N′-Bis(2-oxidobenzyl­idene)-1,2-diphenyl­ethane-1,2-diamine]­bis­(pyridine)cobalt(III) perchlorate methanol hemisolvate hemihydrate

Abstract

In the title compound, [Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2O, each CoIII ion is coordinated by the tetra­dentate N,N′-bis­(2-oxidobenzyl­idene)-1,2-diphenyl­ethane-1,2-diamine ligand [Co—N = 1.900 (3) and 1.903 (3) Å; Co—O = 1.885 (3) and 1.891 (3) Å] and two pyridine ligands [Co—N = 1.967 (4) and 1.977 (3) Å] in a distorted octa­hedral geometry. The packing of the cations and anions forms voids of 258 Å3, which are filled by methanol and solvent water mol­ecules with half occupancies. O—H(...)O hydrogen bonds between solvent molecules, perchlorate anions and water molecules, and between water molecules and O atoms of the ligand, help to consolidate the crystal packing.

Related literature

For related crystal structures, see: Korendovych & Rybak-Akimova (2003 [triangle]); Shi et al. (1995 [triangle]). For general background, see: Amirnasr et al. (2001 [triangle]); Botteher et al., 1997 [triangle]; Cmi et al. (1998 [triangle]); Henson et al. (1999 [triangle]); Polson et al. (1997 [triangle]); Yamada (1999 [triangle]); Zhang et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1377-scheme1.jpg

Experimental

Crystal data

  • [Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2O
  • M r = 760.09
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1377-efi1.jpg
  • a = 10.8900 (3) Å
  • b = 18.6219 (5) Å
  • c = 18.6557 (6) Å
  • V = 3783.24 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 273 (2) K
  • 0.18 × 0.16 × 0.14 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.903, T max = 0.924
  • 42911 measured reflections
  • 7407 independent reflections
  • 5476 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.145
  • S = 1.02
  • 7407 reflections
  • 463 parameters
  • 13 restraints
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 3248 Friedel pairs
  • Flack parameter: 0.03 (2)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 1998 [triangle]); software used to prepare material for publication: XP.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031887/cv2457sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031887/cv2457Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China.

supplementary crystallographic information

Comment

The cobalt complexes with tetradentate Schiff base ligands have been extensively studied due to their important utilities in mimic cobalamin (B12) coenzymes (Amirnasr et al., 2001; Cmi et al., 1998; Polson et al., 1997), and as dioxygen carriers and oxygen activators (Yamada, 1999; Henson et al., 1999) . In addition, CoIII Schiff base complexes have also been used as antimicrobial agents when their two axial positions are occupied by two amine ligands (Botteher et al., 1997). Herein, we report the new CoIII complex based on the chiral tetradentate Schiff base ligand (-)-(1S,2S)-N,N'-Bis(salicylidene)-1,2- diphenyl-1,2-ethanediamine (L), whose structure has been reported recently (Korendovych & Rybak-Akimova, 2003).

In the cation (Fig. 1), the coordination sphere of CoIII ion is a distorted octahedron, in which four equational positions come from two N atoms and two O atoms of the tetradentate Schiff base ligand and the apical positions are occupied by N atoms of two pyridine molecules. The bond lengths of Co—O(L) and Co—N(L) are 1.885 (3), 1.891 (3)A% and 1.900 (3), 1.903 (3)A%, respectively, which are in agreement with the corresponding bond lengths in the similar CoIII Schiff base complex trans-[Co(salen)(py)2][BPh4] (Shi et al., 1995)). The distances of Co—Npy 1.967 (4) and 1.977 (3)A% are also consistent with those distances in the same complex, but slightly longer than the distances of Co—NSchiff base.

Experimental

The free Schiff base ligand L was synthesized according to the literature (Zhang et al., 1990). The synthsis of the title complex was carried out by reacting CoClO4.6H2O, pyridine and L (molar ratio 1:2:1 in methanol. After the stirring process was continued for about 30 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for several days to produce crystals suitable for X-ray diffraction. Anal. Calcd for C38.5H35ClCoN4O7: C, 60.84; H, 4.64; N, 7.37. Found: C, 60.64; H, 4.65; N, 7.39.

Refinement

The occupancies of methanol (O7, C39) and crystalline water (O8) molecules were set to 0.5 and not refined. The common Uiso was refined for O7 and C39 atoms (methanol). Atom O8 was also refined isotropically. All H atoms were placed in idealized positions (C—H 0.93-0.98 Å; O-H 0.82-0.85 Å), and refined as riding with Uiso(H) = 1.2-1.5Ueq of the parent atom.

Figures

Fig. 1.
A view of the cation of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms omited for clarity.

Crystal data

[Co(C28H22N2O2)(C5H5N)2]ClO4·0.5CH4O·0.5H2ODx = 1.334 Mg m3Dm = 1.334 Mg m3Dm measured by not measured
Mr = 760.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8558 reflections
a = 10.8900 (3) Åθ = 2.4–20.8°
b = 18.6219 (5) ŵ = 0.58 mm1
c = 18.6557 (6) ÅT = 273 K
V = 3783.24 (19) Å3Block, red-brown
Z = 40.18 × 0.16 × 0.14 mm
F(000) = 1576

Data collection

Bruker APEXII CCD area-detector diffractometer7407 independent reflections
Radiation source: fine-focus sealed tube5476 reflections with I > 2σ(I)
graphiteRint = 0.064
[var phi] and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −13→13
Tmin = 0.903, Tmax = 0.924k = −22→22
42911 measured reflectionsl = −23→23

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050w = 1/[σ2(Fo2) + (0.0885P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.48 e Å3
7407 reflectionsΔρmin = −0.37 e Å3
463 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.0014 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3248 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.03 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.50476 (4)0.57650 (2)0.75640 (2)0.04751 (16)
Cl10.10093 (14)0.50610 (10)0.55336 (8)0.1022 (5)
O10.6076 (3)0.65694 (14)0.76901 (15)0.0568 (7)
O20.5983 (3)0.55521 (14)0.67367 (15)0.0619 (7)
O30.1244 (5)0.5541 (3)0.4915 (2)0.1324 (18)
O40.2142 (4)0.4859 (3)0.5844 (3)0.1202 (15)
O50.0367 (5)0.4459 (4)0.5318 (4)0.175 (3)
O60.0303 (5)0.5444 (3)0.6048 (3)0.1398 (18)
O70.6798 (12)0.6643 (6)0.5737 (6)0.153 (4)*0.50
H70.64950.63590.60220.230*0.50
O80.9347 (13)0.6770 (6)0.5559 (7)0.163 (4)*0.50
H8C0.85720.67460.56060.195*0.50
H8D0.96570.63770.57030.195*0.50
N10.4061 (3)0.59406 (15)0.83873 (17)0.0460 (7)
N20.3989 (3)0.49659 (15)0.74280 (16)0.0462 (7)
N30.6234 (3)0.52046 (17)0.81394 (17)0.0506 (8)
N40.4010 (4)0.63945 (18)0.6973 (2)0.0601 (9)
C10.5455 (4)0.68095 (18)0.8912 (2)0.0498 (9)
C20.6202 (4)0.69134 (19)0.8297 (2)0.0497 (9)
C30.7149 (4)0.7448 (2)0.8337 (3)0.0571 (10)
H30.76370.75400.79380.069*
C40.7341 (4)0.7824 (2)0.8957 (3)0.0607 (11)
H40.79550.81710.89730.073*
C50.6637 (4)0.7697 (2)0.9561 (3)0.0632 (11)
H50.67990.79470.99820.076*
C60.5700 (4)0.7204 (2)0.9542 (2)0.0578 (10)
H60.52220.71290.99480.069*
C70.4382 (4)0.63562 (19)0.8909 (2)0.0477 (9)
H7A0.38830.63640.93130.057*
C80.5417 (3)0.4304 (2)0.6702 (2)0.0482 (8)
C90.5718 (4)0.3609 (2)0.6450 (2)0.0578 (10)
H90.51780.32310.65360.069*
C100.6775 (4)0.3479 (2)0.6087 (3)0.0666 (12)
H100.69750.30160.59410.080*
C110.7546 (4)0.4046 (3)0.5938 (3)0.0729 (13)
H110.82730.39590.56920.087*
C120.7280 (4)0.4727 (3)0.6140 (3)0.0688 (12)
H120.78090.50980.60130.083*
C130.6209 (4)0.4882 (2)0.6542 (2)0.0539 (10)
C140.4274 (3)0.4402 (2)0.7069 (2)0.0493 (9)
H140.37010.40330.70450.059*
C150.2981 (3)0.5456 (2)0.8473 (2)0.0473 (9)
H150.32020.50880.88260.057*
C160.2763 (3)0.5075 (2)0.7757 (2)0.0486 (9)
H160.23050.54060.74480.058*
C170.1814 (3)0.5823 (2)0.8738 (2)0.0510 (9)
C180.1280 (4)0.6393 (3)0.8389 (3)0.0713 (12)
H180.16640.65880.79890.086*
C190.0192 (4)0.6679 (3)0.8621 (3)0.0758 (13)
H19−0.01590.70570.83670.091*
C20−0.0378 (4)0.6424 (2)0.9208 (3)0.0686 (12)
H20−0.11120.66290.93610.082*
C210.0128 (4)0.5855 (2)0.9584 (2)0.0649 (11)
H21−0.02630.56720.99880.078*
C220.1243 (4)0.5560 (2)0.9345 (2)0.0536 (9)
H220.16010.51830.95980.064*
C230.1990 (4)0.4396 (2)0.7842 (2)0.0571 (10)
C240.2292 (6)0.3877 (3)0.8359 (3)0.0832 (15)
H240.29870.39290.86440.100*
C250.1518 (7)0.3278 (3)0.8433 (4)0.105 (2)
H250.17080.29340.87760.126*
C260.0507 (6)0.3185 (4)0.8023 (4)0.1008 (18)
H260.00120.27830.80830.121*
C270.0227 (5)0.3690 (4)0.7522 (4)0.1023 (19)
H27−0.04670.36320.72370.123*
C280.0970 (4)0.4298 (3)0.7429 (3)0.0739 (12)
H280.07650.46370.70840.089*
C290.5918 (4)0.4749 (2)0.8660 (3)0.0630 (11)
H290.50860.46810.87490.076*
C300.6749 (5)0.4372 (3)0.9074 (3)0.0778 (13)
H300.64860.40670.94370.093*
C310.7970 (5)0.4464 (4)0.8932 (4)0.0970 (19)
H310.85620.42120.91880.116*
C320.8306 (4)0.4940 (3)0.8399 (4)0.0849 (16)
H320.91330.50170.83010.102*
C330.7431 (4)0.5298 (2)0.8013 (3)0.0631 (11)
H330.76750.56150.76540.076*
C340.3626 (6)0.6221 (3)0.6330 (3)0.0879 (17)
H340.38100.57640.61600.105*
C350.2964 (7)0.6674 (3)0.5888 (4)0.114 (3)
H350.27030.65210.54380.137*
C360.2701 (7)0.7351 (4)0.6125 (4)0.117 (2)
H360.22870.76720.58290.140*
C370.3057 (6)0.7558 (3)0.6813 (4)0.0915 (17)
H370.28560.80080.69960.110*
C380.3721 (5)0.7068 (2)0.7213 (3)0.0691 (12)
H380.39850.72030.76680.083*
C390.5940 (19)0.7285 (10)0.5644 (10)0.153 (4)*0.50
H39A0.55630.73980.60950.230*0.50
H39B0.53160.71700.52990.230*0.50
H39C0.64030.76920.54790.230*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0420 (3)0.0414 (3)0.0591 (3)−0.0055 (2)0.0071 (3)−0.0055 (2)
Cl10.0737 (9)0.1434 (14)0.0895 (9)−0.0270 (9)0.0163 (7)−0.0380 (9)
O10.0533 (16)0.0459 (14)0.0712 (18)−0.0099 (12)0.0084 (14)−0.0100 (12)
O20.0624 (17)0.0527 (16)0.0705 (17)−0.0156 (14)0.0165 (15)−0.0143 (13)
O30.125 (4)0.198 (5)0.073 (2)−0.016 (4)0.013 (2)−0.008 (3)
O40.073 (3)0.155 (4)0.132 (3)−0.013 (3)0.003 (3)−0.009 (3)
O50.109 (4)0.213 (6)0.204 (6)−0.068 (4)0.018 (4)−0.090 (5)
O60.141 (4)0.157 (4)0.121 (3)0.013 (4)0.047 (3)−0.035 (3)
N10.0350 (15)0.0403 (16)0.0626 (18)0.0018 (13)0.0020 (14)−0.0051 (14)
N20.0385 (15)0.0437 (16)0.0564 (17)−0.0024 (13)0.0045 (15)−0.0035 (14)
N30.0392 (17)0.0451 (17)0.068 (2)−0.0015 (14)−0.0004 (15)−0.0106 (15)
N40.060 (2)0.0524 (19)0.068 (2)−0.0124 (18)−0.0020 (19)0.0029 (16)
C10.044 (2)0.0363 (19)0.070 (2)0.0064 (16)−0.0002 (18)−0.0026 (17)
C20.041 (2)0.0355 (19)0.073 (3)0.0044 (16)−0.0035 (19)−0.0068 (18)
C30.044 (2)0.047 (2)0.081 (3)0.0023 (18)−0.003 (2)−0.003 (2)
C40.047 (2)0.040 (2)0.096 (3)0.0008 (18)−0.018 (2)−0.010 (2)
C50.054 (3)0.053 (2)0.083 (3)0.002 (2)−0.016 (2)−0.014 (2)
C60.057 (3)0.046 (2)0.070 (3)0.0029 (19)−0.009 (2)−0.0085 (19)
C70.046 (2)0.0396 (18)0.058 (2)0.0036 (17)0.0047 (18)−0.0028 (17)
C80.0429 (19)0.0465 (19)0.0552 (19)−0.0043 (17)0.0000 (15)−0.0079 (18)
C90.050 (2)0.052 (2)0.071 (3)−0.0026 (19)0.002 (2)−0.0113 (19)
C100.052 (2)0.062 (3)0.086 (3)0.003 (2)0.004 (2)−0.017 (2)
C110.046 (3)0.082 (3)0.091 (3)−0.001 (2)0.014 (2)−0.027 (3)
C120.050 (2)0.074 (3)0.082 (3)−0.015 (2)0.018 (2)−0.015 (2)
C130.049 (2)0.055 (2)0.057 (2)−0.0091 (19)0.0057 (18)−0.0100 (18)
C140.045 (2)0.043 (2)0.060 (2)−0.0073 (17)0.0032 (18)−0.0049 (17)
C150.039 (2)0.045 (2)0.058 (2)0.0004 (16)0.0063 (17)0.0015 (17)
C160.0388 (18)0.045 (2)0.062 (2)−0.0017 (17)0.0045 (16)−0.0038 (17)
C170.0359 (18)0.052 (2)0.065 (2)0.0015 (17)0.0010 (17)−0.0017 (19)
C180.059 (3)0.070 (3)0.085 (3)0.015 (2)0.010 (2)0.009 (2)
C190.054 (3)0.075 (3)0.098 (3)0.027 (2)0.008 (3)0.006 (2)
C200.049 (2)0.068 (3)0.089 (3)0.011 (2)0.004 (2)−0.014 (2)
C210.047 (2)0.081 (3)0.066 (2)−0.004 (2)0.009 (2)−0.013 (2)
C220.047 (2)0.056 (2)0.059 (2)0.0006 (18)0.0067 (18)−0.0029 (17)
C230.049 (2)0.056 (2)0.066 (2)−0.0120 (19)0.0161 (19)−0.009 (2)
C240.095 (4)0.062 (3)0.092 (3)−0.030 (3)−0.003 (3)0.005 (3)
C250.130 (5)0.074 (3)0.112 (4)−0.036 (4)0.028 (4)0.002 (3)
C260.089 (4)0.098 (4)0.116 (4)−0.045 (3)0.030 (3)−0.027 (3)
C270.052 (3)0.113 (4)0.141 (5)−0.031 (3)0.016 (4)−0.054 (4)
C280.049 (2)0.081 (3)0.092 (3)−0.012 (2)0.004 (2)−0.021 (3)
C290.046 (2)0.058 (2)0.086 (3)0.007 (2)−0.001 (2)−0.003 (2)
C300.070 (3)0.064 (3)0.099 (3)0.008 (3)−0.015 (3)0.008 (3)
C310.068 (4)0.096 (4)0.127 (5)0.030 (3)−0.036 (4)−0.020 (4)
C320.045 (2)0.087 (4)0.123 (4)0.010 (3)−0.011 (3)−0.034 (4)
C330.040 (2)0.067 (3)0.082 (3)−0.003 (2)0.003 (2)−0.022 (2)
C340.111 (5)0.067 (3)0.085 (4)−0.016 (3)−0.021 (3)0.007 (3)
C350.154 (7)0.075 (4)0.114 (5)−0.020 (4)−0.063 (5)0.025 (3)
C360.137 (6)0.082 (4)0.131 (6)−0.004 (4)−0.045 (5)0.036 (4)
C370.103 (4)0.058 (3)0.113 (4)0.004 (3)−0.013 (4)0.015 (3)
C380.069 (3)0.059 (3)0.079 (3)−0.002 (2)−0.002 (2)0.006 (2)

Geometric parameters (Å, °)

Co1—O11.885 (3)C15—C171.525 (5)
Co1—O21.891 (3)C15—C161.530 (5)
Co1—N21.900 (3)C15—H150.9800
Co1—N11.903 (3)C16—C231.528 (5)
Co1—N41.967 (4)C16—H160.9800
Co1—N31.977 (3)C17—C181.374 (6)
Cl1—O51.381 (5)C17—C221.383 (5)
Cl1—O41.414 (5)C18—C191.368 (6)
Cl1—O61.421 (5)C18—H180.9300
Cl1—O31.482 (5)C19—C201.347 (7)
O1—C21.309 (5)C19—H190.9300
O2—C131.322 (5)C20—C211.385 (6)
O7—C391.53 (2)C20—H200.9300
O7—H70.8200C21—C221.407 (5)
O8—H8C0.8501C21—H210.9300
O8—H8D0.8501C22—H220.9300
N1—C71.291 (5)C23—C281.364 (6)
N1—C151.492 (5)C23—C241.403 (7)
N2—C141.284 (4)C24—C251.405 (7)
N2—C161.483 (5)C24—H240.9300
N3—C291.334 (6)C25—C261.351 (9)
N3—C331.337 (5)C25—H250.9300
N4—C341.310 (6)C26—C271.362 (10)
N4—C381.369 (6)C26—H260.9300
C1—C61.411 (6)C27—C281.401 (7)
C1—C21.420 (6)C27—H270.9300
C1—C71.441 (5)C28—H280.9300
C2—C31.436 (6)C29—C301.381 (6)
C3—C41.367 (6)C29—H290.9300
C3—H30.9300C30—C311.367 (8)
C4—C51.383 (7)C30—H300.9300
C4—H40.9300C31—C321.381 (8)
C5—C61.373 (6)C31—H310.9300
C5—H50.9300C32—C331.368 (7)
C6—H60.9300C32—H320.9300
C7—H7A0.9300C33—H330.9300
C8—C131.412 (5)C34—C351.382 (8)
C8—C91.416 (6)C34—H340.9300
C8—C141.431 (5)C35—C361.366 (10)
C9—C101.357 (6)C35—H350.9300
C9—H90.9300C36—C371.396 (10)
C10—C111.378 (7)C36—H360.9300
C10—H100.9300C37—C381.382 (7)
C11—C121.354 (7)C37—H370.9300
C11—H110.9300C38—H380.9300
C12—C131.416 (6)C39—H39A0.9600
C12—H120.9300C39—H39B0.9600
C14—H140.9300C39—H39C0.9600
O1—Co1—O287.05 (11)N1—C15—H15107.5
O1—Co1—N2178.89 (13)C17—C15—H15107.5
O2—Co1—N293.08 (12)C16—C15—H15107.5
O1—Co1—N195.62 (12)N2—C16—C23115.1 (3)
O2—Co1—N1177.32 (12)N2—C16—C15106.6 (3)
N2—Co1—N184.24 (13)C23—C16—C15112.3 (3)
O1—Co1—N486.43 (14)N2—C16—H16107.5
O2—Co1—N488.66 (15)C23—C16—H16107.5
N2—Co1—N492.48 (14)C15—C16—H16107.5
N1—Co1—N491.49 (14)C18—C17—C22118.1 (4)
O1—Co1—N387.91 (13)C18—C17—C15123.1 (4)
O2—Co1—N388.89 (14)C22—C17—C15118.7 (3)
N2—Co1—N393.19 (12)C19—C18—C17121.2 (5)
N1—Co1—N391.22 (13)C19—C18—H18119.4
N4—Co1—N3173.94 (14)C17—C18—H18119.4
O5—Cl1—O4110.2 (4)C20—C19—C18121.2 (5)
O5—Cl1—O6109.3 (3)C20—C19—H19119.4
O4—Cl1—O6109.2 (3)C18—C19—H19119.4
O5—Cl1—O3110.5 (4)C19—C20—C21119.9 (4)
O4—Cl1—O3109.2 (3)C19—C20—H20120.0
O6—Cl1—O3108.4 (3)C21—C20—H20120.0
C2—O1—Co1124.0 (3)C20—C21—C22118.8 (4)
C13—O2—Co1121.5 (2)C20—C21—H21120.6
C39—O7—H7109.5C22—C21—H21120.6
H8C—O8—H8D108.3C17—C22—C21120.6 (4)
C7—N1—C15119.7 (3)C17—C22—H22119.7
C7—N1—Co1123.9 (3)C21—C22—H22119.7
C15—N1—Co1115.3 (2)C28—C23—C24119.1 (4)
C14—N2—C16123.1 (3)C28—C23—C16120.1 (4)
C14—N2—Co1124.3 (2)C24—C23—C16120.7 (4)
C16—N2—Co1112.6 (2)C23—C24—C25118.2 (5)
C29—N3—C33117.6 (4)C23—C24—H24120.9
C29—N3—Co1124.2 (3)C25—C24—H24120.9
C33—N3—Co1118.2 (3)C26—C25—C24122.4 (6)
C34—N4—C38116.9 (4)C26—C25—H25118.8
C34—N4—Co1123.4 (3)C24—C25—H25118.8
C38—N4—Co1119.6 (3)C25—C26—C27118.8 (6)
C6—C1—C2119.6 (4)C25—C26—H26120.6
C6—C1—C7117.5 (4)C27—C26—H26120.6
C2—C1—C7122.7 (3)C26—C27—C28120.9 (6)
O1—C2—C1124.9 (3)C26—C27—H27119.5
O1—C2—C3117.4 (4)C28—C27—H27119.5
C1—C2—C3117.6 (4)C23—C28—C27120.5 (5)
C4—C3—C2120.6 (4)C23—C28—H28119.7
C4—C3—H3119.7C27—C28—H28119.7
C2—C3—H3119.7N3—C29—C30124.1 (4)
C3—C4—C5121.1 (4)N3—C29—H29117.9
C3—C4—H4119.5C30—C29—H29117.9
C5—C4—H4119.5C31—C30—C29117.7 (5)
C6—C5—C4120.4 (4)C31—C30—H30121.1
C6—C5—H5119.8C29—C30—H30121.1
C4—C5—H5119.8C30—C31—C32118.6 (5)
C5—C6—C1120.7 (4)C30—C31—H31120.7
C5—C6—H6119.7C32—C31—H31120.7
C1—C6—H6119.7C33—C32—C31120.5 (5)
N1—C7—C1125.0 (4)C33—C32—H32119.8
N1—C7—H7A117.5C31—C32—H32119.8
C1—C7—H7A117.5N3—C33—C32121.5 (5)
C13—C8—C9119.0 (3)N3—C33—H33119.2
C13—C8—C14122.4 (3)C32—C33—H33119.2
C9—C8—C14118.5 (3)N4—C34—C35124.3 (6)
C10—C9—C8121.7 (4)N4—C34—H34117.9
C10—C9—H9119.2C35—C34—H34117.9
C8—C9—H9119.2C36—C35—C34118.6 (6)
C9—C10—C11118.7 (4)C36—C35—H35120.7
C9—C10—H10120.6C34—C35—H35120.7
C11—C10—H10120.6C35—C36—C37119.6 (6)
C12—C11—C10122.1 (4)C35—C36—H36120.2
C12—C11—H11118.9C37—C36—H36120.2
C10—C11—H11118.9C38—C37—C36117.4 (6)
C11—C12—C13121.0 (4)C38—C37—H37121.3
C11—C12—H12119.5C36—C37—H37121.3
C13—C12—H12119.5N4—C38—C37123.2 (5)
O2—C13—C8123.2 (3)N4—C38—H38118.4
O2—C13—C12119.4 (4)C37—C38—H38118.4
C8—C13—C12117.4 (4)O7—C39—H39A109.5
N2—C14—C8124.4 (3)O7—C39—H39B109.5
N2—C14—H14117.8H39A—C39—H39B109.5
C8—C14—H14117.8O7—C39—H39C109.5
N1—C15—C17114.8 (3)H39A—C39—H39C109.5
N1—C15—C16108.0 (3)H39B—C39—H39C109.5
C17—C15—C16111.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O8—H8D···O6i0.851.982.831 (14)178
O8—H8C···O70.851.962.807 (19)177
O7—H7···O20.822.082.897 (11)171

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2457).

References

  • Amirnasr, M., Schenk, K. J., Gorji, A. & Vafazadef, R. (2001). Polyhedron, 20, 695–702.
  • Botteher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J. & Gray, H. B. (1997). Inorg. Chem.36, 2498–2504.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cmi, R., Moore, S. J. & Marzilli, L. G. (1998). Inorg. Chem.37, 6890–6897. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Henson, N. J., Hay, P. J. & Redondo, A. (1999). Inorg. Chem.38, 1618–1626.
  • Korendovych, I. V. & Rybak-Akimova, E. V. (2003). Acta Cryst. E59, o1498–o1500.
  • Polson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem.36, 314–322.
  • Sheldrick, G. M. (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206–207.
  • Yamada, S. (1999). Coord. Chem. Rev.191–192, 537–555.
  • Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc.112, 2801–2803.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography