PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1399.
Published online 2008 October 15. doi:  10.1107/S1600536808032571
PMCID: PMC2959627

Tetra­kis[tris­(2,2′-bi-1H-benzimidazole)nickel(II)] bis­(phosphate) sulfate

Abstract

The title compound, [Ni(C14H10N4)3]4(PO4)2(SO4), consists of [Ni(C14H10N4)3]2+ complex cations (.3. symmetry) and disordered anions (An external file that holds a picture, illustration, etc.
Object name is e-64-m1399-efi1.jpg symmetry) with occupancy factors of two-thirds for PO4 3− and one-third for SO4 2−. The Ni2+ centre is chelated by three bidentate 2,2′-bi-1H-benzimidazole mol­ecules in a distorted octa­hedral coordination. N—H(...)O hydrogen bonds consolidate the building units into a framework structure.

Related literature

For the potential applications of metal–organic coordination compounds in gas absorption and separation, catalysis, non-linear optics, luminescence and magnetism, see: Kitagawa & Matsuda (2007 [triangle]); Maspoch et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1399-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H10N4)3]4(PO4)2(SO4)
  • M r = 3331.96
  • Cubic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1399-efi2.jpg
  • a = 24.964 (7) Å
  • V = 15558 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 296 (2) K
  • 0.32 × 0.27 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.834, T max = 0.876
  • 20222 measured reflections
  • 2551 independent reflections
  • 1782 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.098
  • S = 1.01
  • 2551 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1182 Friedel pairs
  • Flack parameter: −0.02 (2)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032571/at2642sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032571/at2642Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

supplementary crystallographic information

Comment

More attentions have been paid to metal-organic coordination compounds (MOCCs) because of their potential applications in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism (Kitagawa & Matsuda 2007, Maspoch et al. 2007). In the field of coordination chemistry, the N,N-bidentate ligands, such as 2,2'-bipyridine, 1,10-phenanthroline and their derivatives act as versatile ligands owing to the stable coordination configuration in the bidentate N-donors chelating manner. Herein, we report the title compound (I).

The title compound (I) consists of four [Ni(C14H10N4)3]2+ complex cations, one [SO4]2- and two [PO4]3- anions. In the mlecular structure, the Ni2+ centre is coordinated by six N atoms from three bidentate 1H,1'H-2,2'-bi-1H-benzimidazole molecules (Fig.1). The 1H,1'H-2,2'-bi-1H-benzimidazole ligand was prepared in situ and coordinated to the Ni2+ cations in hydrothermal reaction. Additionally, the [SO4]2- and [PO4]3- anions statistically distribute in one position with 1/3 probability for S and 2/3 probability for P atoms. The environment of the Ni2+ caion is in a distorted octahedral geometry with the Ni—N distances ranging from 2.088 (3) to 2.122 (3) Å (Table 1).

In addition, the [Ni(C14H10N4)3]2+ complex cations, [SO4]2- and [PO4]3- anions in the complexes are linked together via many N—H···O hydrogen bonds resulting in a three-dimensional structural frameworks (Fig.2 and Table 2).

Experimental

All reagents were commercially available and of analytical grade. The mixture of NiSO4.6H2O, H3PO4, oxalic acid, and 1,2-diaminobenzene in the mole ratio of 1: 1.5: 6: 6 was dissolved in 25 ml H2O, which was heated in a Teflon-lined steel autoclave inside a programmable electric furnace at 393 K for five days. After cooling the autoclave to room temperature, green block crystals of (I) were obtained.

Refinement

H atoms were treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å, and were refined as riding with Uiso(H) = 1.2Ueq(N and C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
Fig. 2.
Three-dimensional structure of (I). Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms not involved in hydrogen bonds are omitted.

Crystal data

[Ni(C14H10N4)3]4(PO4)2(SO4)Dx = 1.423 Mg m3
Mr = 3331.96Mo Kα radiation, λ = 0.71073 Å
Cubic, I43dCell parameters from 3375 reflections
Hall symbol: I -4bd 2c 3θ = 2.3–19.2°
a = 24.964 (7) ŵ = 0.59 mm1
V = 15558 (8) Å3T = 296 K
Z = 4Block, green
F(000) = 68720.32 × 0.27 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer2551 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
graphiteRint = 0.066
[var phi] and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −30→11
Tmin = 0.834, Tmax = 0.876k = −30→29
20222 measured reflectionsl = −21→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098w = 1/[σ2(Fo2) + (0.0528P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2551 reflectionsΔρmax = 0.61 e Å3
177 parametersΔρmin = −0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1182 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.564621 (16)0.435379 (16)−0.064621 (16)0.0428 (2)
P10.75000.62501.00000.0427 (4)0.67
S10.75000.62501.00000.0427 (4)0.33
N10.64773 (10)0.44469 (11)−0.06574 (11)0.0443 (6)
N20.71668 (10)0.50117 (12)−0.06248 (11)0.0498 (7)
H2B0.73400.5309−0.06040.060*
N30.56297 (10)0.42828 (11)0.02009 (10)0.0444 (6)
N40.55652 (11)0.37290 (12)0.08942 (11)0.0502 (7)
H4B0.55380.34350.10720.060*
C10.69498 (13)0.41559 (13)−0.06917 (13)0.0462 (8)
C20.70405 (15)0.36114 (16)−0.07434 (15)0.0594 (9)
H20.67580.3370−0.07630.071*
C30.75637 (17)0.34409 (18)−0.07642 (16)0.0744 (13)
H30.76380.3077−0.07970.089*
C40.79858 (16)0.3808 (2)−0.07359 (16)0.0707 (12)
H40.83350.3679−0.07500.085*
C50.79104 (13)0.43383 (18)−0.06895 (15)0.0627 (10)
H50.81970.4576−0.06700.075*
C60.73810 (12)0.45147 (14)−0.06724 (14)0.0473 (8)
C70.66286 (13)0.49523 (14)−0.06164 (13)0.0443 (8)
C80.56226 (15)0.45873 (13)0.06673 (14)0.0487 (9)
C90.56566 (17)0.51278 (15)0.07424 (15)0.0645 (11)
H90.56810.53630.04550.077*
C100.5653 (2)0.53090 (18)0.12671 (19)0.0848 (13)
H100.56720.56750.13330.102*
C110.5623 (2)0.49628 (19)0.16920 (17)0.0863 (14)
H110.56270.51020.20370.104*
C120.55859 (18)0.44183 (18)0.16272 (14)0.0698 (11)
H120.55620.41860.19170.084*
C130.55865 (13)0.42369 (14)0.11042 (13)0.0489 (8)
C140.55946 (13)0.37792 (14)0.03571 (13)0.0443 (8)
O10.77314 (11)0.59036 (9)0.95604 (10)0.0629 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0428 (2)0.0428 (2)0.0428 (2)−0.00140 (19)−0.00140 (19)0.00140 (19)
P10.0469 (6)0.0341 (9)0.0469 (6)0.0000.0000.000
S10.0469 (6)0.0341 (9)0.0469 (6)0.0000.0000.000
N10.0386 (14)0.0485 (17)0.0458 (16)0.0000 (13)−0.0006 (13)0.0019 (15)
N20.0447 (17)0.0543 (18)0.0503 (17)−0.0083 (14)−0.0009 (14)−0.0019 (15)
N30.0432 (16)0.0445 (16)0.0456 (15)0.0006 (15)−0.0046 (13)−0.0007 (13)
N40.0552 (19)0.0518 (18)0.0436 (17)−0.0046 (14)−0.0034 (14)0.0093 (14)
C10.049 (2)0.0486 (19)0.0411 (18)0.0030 (16)−0.0031 (17)−0.0036 (15)
C20.054 (2)0.060 (2)0.065 (2)0.0073 (18)−0.0023 (19)−0.0042 (19)
C30.064 (3)0.076 (3)0.084 (3)0.024 (2)−0.003 (2)−0.009 (2)
C40.045 (2)0.097 (4)0.070 (3)0.021 (2)−0.002 (2)−0.014 (2)
C50.0439 (19)0.083 (3)0.061 (3)0.000 (2)−0.0050 (18)−0.016 (3)
C60.0417 (19)0.064 (2)0.0366 (18)0.0018 (16)−0.0048 (16)−0.0077 (17)
C70.044 (2)0.048 (2)0.0410 (19)−0.0065 (15)−0.0027 (15)−0.0012 (16)
C80.049 (2)0.052 (2)0.0449 (19)0.0051 (16)−0.0042 (18)−0.0057 (16)
C90.092 (3)0.050 (2)0.051 (2)−0.002 (2)−0.009 (2)−0.0036 (17)
C100.124 (4)0.065 (3)0.066 (3)0.006 (3)−0.010 (3)−0.013 (2)
C110.133 (4)0.077 (3)0.049 (3)0.001 (3)−0.013 (3)−0.017 (2)
C120.093 (3)0.074 (3)0.042 (2)−0.006 (3)−0.005 (2)0.001 (2)
C130.050 (2)0.055 (2)0.0423 (19)−0.0009 (18)−0.0050 (16)−0.0006 (16)
C140.0315 (18)0.053 (2)0.049 (2)−0.0032 (16)−0.0021 (15)0.0045 (17)
O10.0818 (18)0.0455 (15)0.0616 (17)−0.0077 (13)0.0150 (14)−0.0033 (12)

Geometric parameters (Å, °)

Ni1—N12.088 (3)C1—C61.401 (5)
Ni1—N1i2.088 (3)C2—C31.375 (5)
Ni1—N1ii2.088 (3)C2—H20.9300
Ni1—N3ii2.122 (3)C3—C41.398 (6)
Ni1—N32.122 (3)C3—H30.9300
Ni1—N3i2.122 (3)C4—C51.342 (6)
P1—O1iii1.512 (3)C4—H40.9300
P1—O1iv1.512 (3)C5—C61.394 (4)
P1—O11.512 (3)C5—H50.9300
P1—O1v1.512 (3)C7—C14ii1.435 (5)
N1—C71.321 (4)C8—C91.365 (5)
N1—C11.388 (4)C8—C131.401 (5)
N2—C71.352 (4)C9—C101.386 (6)
N2—C61.356 (4)C9—H90.9300
N2—H2B0.8600C10—C111.370 (6)
N3—C141.319 (4)C10—H100.9300
N3—C81.391 (4)C11—C121.372 (6)
N4—C141.349 (4)C11—H110.9300
N4—C131.373 (4)C12—C131.382 (5)
N4—H4B0.8600C12—H120.9300
C1—C21.384 (5)C14—C7i1.435 (5)
N1—Ni1—N1i95.67 (10)C1—C2—H2121.2
N1—Ni1—N1ii95.67 (10)C2—C3—C4120.7 (4)
N1i—Ni1—N1ii95.67 (10)C2—C3—H3119.6
N1—Ni1—N3ii78.84 (10)C4—C3—H3119.6
N1i—Ni1—N3ii170.67 (9)C5—C4—C3123.0 (4)
N1ii—Ni1—N3ii92.40 (9)C5—C4—H4118.5
N1—Ni1—N392.40 (9)C3—C4—H4118.5
N1i—Ni1—N378.84 (10)C4—C5—C6116.6 (4)
N1ii—Ni1—N3170.67 (9)C4—C5—H5121.7
N3ii—Ni1—N393.75 (9)C6—C5—H5121.7
N1—Ni1—N3i170.67 (9)N2—C6—C5131.7 (3)
N1i—Ni1—N3i92.40 (9)N2—C6—C1106.6 (3)
N1ii—Ni1—N3i78.84 (10)C5—C6—C1121.7 (3)
N3ii—Ni1—N3i93.75 (9)N1—C7—N2112.8 (3)
N3—Ni1—N3i93.75 (9)N1—C7—C14ii118.2 (3)
O1iii—P1—O1iv110.22 (17)N2—C7—C14ii128.9 (3)
O1iii—P1—O1109.10 (9)C9—C8—N3130.9 (3)
O1iv—P1—O1109.10 (9)C9—C8—C13121.0 (3)
O1iii—P1—O1v109.10 (9)N3—C8—C13108.1 (3)
O1iv—P1—O1v109.10 (9)C8—C9—C10116.9 (4)
O1—P1—O1v110.22 (17)C8—C9—H9121.6
C7—N1—C1105.2 (3)C10—C9—H9121.6
C7—N1—Ni1112.9 (2)C11—C10—C9121.7 (4)
C1—N1—Ni1141.9 (2)C11—C10—H10119.1
C7—N2—C6107.0 (3)C9—C10—H10119.1
C7—N2—H2B126.5C10—C11—C12122.5 (4)
C6—N2—H2B126.5C10—C11—H11118.7
C14—N3—C8105.8 (3)C12—C11—H11118.7
C14—N3—Ni1112.0 (2)C11—C12—C13115.8 (4)
C8—N3—Ni1142.1 (2)C11—C12—H12122.1
C14—N4—C13107.0 (3)C13—C12—H12122.1
C14—N4—H4B126.5N4—C13—C12131.5 (3)
C13—N4—H4B126.5N4—C13—C8106.4 (3)
C2—C1—N1131.2 (3)C12—C13—C8122.1 (3)
C2—C1—C6120.4 (3)N3—C14—N4112.7 (3)
N1—C1—C6108.4 (3)N3—C14—C7i117.7 (3)
C3—C2—C1117.6 (4)N4—C14—C7i129.5 (3)
C3—C2—H2121.2
N1i—Ni1—N1—C7−168.5 (2)C2—C1—C6—N2179.6 (3)
N1ii—Ni1—N1—C795.2 (3)N1—C1—C6—N20.3 (4)
N3ii—Ni1—N1—C73.9 (2)C2—C1—C6—C5−1.8 (5)
N3—Ni1—N1—C7−89.5 (3)N1—C1—C6—C5178.9 (3)
N3i—Ni1—N1—C741.7 (7)C1—N1—C7—N20.4 (4)
N1i—Ni1—N1—C111.1 (4)Ni1—N1—C7—N2−179.9 (2)
N1ii—Ni1—N1—C1−85.2 (3)C1—N1—C7—C14ii177.6 (3)
N3ii—Ni1—N1—C1−176.5 (4)Ni1—N1—C7—C14ii−2.6 (4)
N3—Ni1—N1—C190.1 (4)C6—N2—C7—N1−0.2 (4)
N3i—Ni1—N1—C1−138.6 (6)C6—N2—C7—C14ii−177.1 (3)
N1—Ni1—N3—C14−100.0 (2)C14—N3—C8—C9178.8 (4)
N1i—Ni1—N3—C14−4.7 (2)Ni1—N3—C8—C9−4.5 (7)
N1ii—Ni1—N3—C1449.9 (7)C14—N3—C8—C130.5 (4)
N3ii—Ni1—N3—C14−178.9 (2)Ni1—N3—C8—C13177.2 (3)
N3i—Ni1—N3—C1487.1 (3)N3—C8—C9—C10−178.2 (4)
N1—Ni1—N3—C883.5 (4)C13—C8—C9—C100.0 (6)
N1i—Ni1—N3—C8178.8 (4)C8—C9—C10—C110.7 (7)
N1ii—Ni1—N3—C8−126.7 (6)C9—C10—C11—C12−1.0 (8)
N3ii—Ni1—N3—C84.5 (4)C10—C11—C12—C130.6 (8)
N3i—Ni1—N3—C8−89.5 (3)C14—N4—C13—C12−178.1 (4)
C7—N1—C1—C2−179.6 (4)C14—N4—C13—C80.8 (4)
Ni1—N1—C1—C20.7 (7)C11—C12—C13—N4178.7 (4)
C7—N1—C1—C6−0.4 (4)C11—C12—C13—C80.0 (6)
Ni1—N1—C1—C6180.0 (3)C9—C8—C13—N4−179.3 (3)
N1—C1—C2—C3−179.6 (3)N3—C8—C13—N4−0.8 (4)
C6—C1—C2—C31.2 (5)C9—C8—C13—C12−0.3 (6)
C1—C2—C3—C4−0.3 (6)N3—C8—C13—C12178.2 (4)
C2—C3—C4—C5−0.2 (6)C8—N3—C14—N40.0 (4)
C3—C4—C5—C6−0.3 (6)Ni1—N3—C14—N4−177.9 (2)
C7—N2—C6—C5−178.5 (4)C8—N3—C14—C7i−177.4 (3)
C7—N2—C6—C10.0 (4)Ni1—N3—C14—C7i4.8 (3)
C4—C5—C6—N2179.5 (4)C13—N4—C14—N3−0.5 (4)
C4—C5—C6—C11.3 (6)C13—N4—C14—C7i176.5 (3)

Symmetry codes: (i) −z+1/2, −x+1, y−1/2; (ii) −y+1, z+1/2, −x+1/2; (iii) −z+7/4, −y+5/4, x+1/4; (iv) z−1/4, −y+5/4, −x+7/4; (v) −x+3/2, y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4B···O1vi0.861.962.766 (4)156
N2—H2B···O1vii0.861.822.675 (4)170

Symmetry codes: (vi) x−1/4, −z+5/4, −y+3/4; (vii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2642).

References

  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev.251, 2490–2509.
  • Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev.36, 770–818. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography