PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1482–m1483.
Published online 2008 October 31. doi:  10.1107/S1600536808033539
PMCID: PMC2959626

Bis{6-meth­oxy-2-[(4-methyl­phen­yl)­iminio­meth­yl]phenolato-κ2 O,O′}bis­(nitrato-κ2 O,O′)cadmium(II)

Abstract

The Schiff base 6-meth­oxy-2-[(4-methyl­phen­yl)imino­meth­yl]­phenol (HL) forms a neutral complex with cadmium(II) nitrate, [Cd(NO3)2(C15H15NO2)2], in which the four O atoms of the two independent ligands are coordinated to the metal center and the protonated imine N atoms are involved in a hydrogen bond with the phenoxide group. Intra­molecular N—H(...)O hydrogen-bonding inter­actions stabilize the structure. Each organic ligand assumes a zwitterionic form, chelating to the metal atom through the two O atoms, while the two nitrate groups also exhibit chelating behavior, leading to a distorted octahedral coordination of the Cd atom.

Related literature

For related literature, see: Dominiak et al. (2003 [triangle]); Elmali et al. (2003 [triangle]); Filarowski et al. (1998 [triangle]); Müller et al. (2001 [triangle]); Novitchi et al. (2008 [triangle]); Schiff (1864 [triangle]); West (1960 [triangle]); Woźniak et al. (1995 [triangle]); Yu et al. (2007 [triangle]); Zhao et al. (2007 [triangle]); Zhou et al. (2007 [triangle]); Zhou & Zhao (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1482-scheme1.jpg

Experimental

Crystal data

  • [Cd(NO3)2(C15H15NO2)2]
  • M r = 718.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1482-efi1.jpg
  • a = 10.8009 (4) Å
  • b = 27.3377 (10) Å
  • c = 10.5878 (4) Å
  • β = 90.208 (2)°
  • V = 3126.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.76 mm−1
  • T = 296 (2) K
  • 0.35 × 0.30 × 0.11 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.765, T max = 0.923
  • 31192 measured reflections
  • 5498 independent reflections
  • 3112 reflections with I > 2σ(I)
  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.178
  • S = 0.98
  • 5498 reflections
  • 389 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.92 e Å−3
  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033539/at2640sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033539/at2640Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Since the Schiff bases, the products of condensation of carbonyl compounds with primary amines, were discovered in 1864 by Hugo Schiff (Schiff, 1864), the studies on this kind of compounds containing imine group were carried out widely in different application fields. And recently, the metal complexes with the Schiff base ligands derived from substituted salicylaldehyde and aniline, have received attention due to their applications in catalysis, nuclear medicine (Zhou et al., 2007), magnetism (Elmali et al., 2003) and novel structural features (Müller et al., 2001; Novitchi et al., 2008). They include complexes with a methoxy group in the ortho position (West, 1960) which can bind to the metal too. Zhao and co-workers had reported complexes of this series with several transitional and rare earth metals (Zhou & Zhao, 2007; Yu et al., 2007; Zhao et al., 2007). Here we decribe the synthesis and crystal structure of a new cadmium(II) complex (Fig. 1), Cd(HL)2(NO3)2, involving the Schiff base HL.

The most interesting feature of the complex is the two N—H···O intramolecular hydrogen bonds. In fact, there is a proton-transfer equilibrium between the OH and NH tautomers (Dominiak et al., 2003). And it is reported that the products of condensation of salicylaldehydes with anilines show intermolecular proton-transfer equilibrium and double fluorescence (Filarowski et al., 1998; Woźniak et al., 1995). In addition, the title complex has the Cd atom in a geometry that can be better described as a bicapped trigonal antiprism (Fig. 2).

Experimental

First, the ligand was prepared by the direct solid-phase reaction of o-vanillin (10 mmol, 1.5251 g) and p-toluidine (10 mmol, 1.0700 g). The reactants were ground in an agate mortar. The colour of the mixture changed from light yellow to orange. Then, for the preparation of the complex, the solution of Cd(NO3)2.4H2O (1 mmol, 0.3091 g) in methanol (10 ml) was added to a methanol (30 ml) solution of the Schiff base ligand (2 mmol, 0.4812 g). Red crystals were obtained after two weeks.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, methylic C—H = 0.96 Å, N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C)].

Figures

Fig. 1.
The molecular structure of complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Eight-coordinate geometry of Cd.

Crystal data

[Cd(NO3)2(C15H15NO2)2]F(000) = 1464
Mr = 718.99Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8740 reflections
a = 10.8009 (4) Åθ = 1.9–25.0°
b = 27.3377 (10) ŵ = 0.76 mm1
c = 10.5878 (4) ÅT = 296 K
β = 90.208 (2)°Block, red
V = 3126.3 (2) Å30.35 × 0.30 × 0.11 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer5498 independent reflections
Radiation source: fine-focus sealed tube3112 reflections with I > 2σ(I)
graphiteRint = 0.090
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.765, Tmax = 0.923k = −32→32
31192 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.178w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.003
5498 reflectionsΔρmax = 0.92 e Å3
389 parametersΔρmin = −0.74 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.52395 (5)0.120056 (16)0.72358 (4)0.0622 (2)
N10.6050 (5)0.0522 (2)0.3386 (4)0.0599 (14)
H1D0.61110.06350.41410.072*
O10.2880 (4)0.08774 (19)0.6790 (4)0.0758 (14)
C11.0356 (10)0.0759 (4)0.0381 (11)0.177 (6)
H1A1.10440.08610.08930.265*
H1B1.01610.1011−0.02200.265*
H1C1.05670.0464−0.00600.265*
O20.4950 (4)0.07844 (15)0.5476 (3)0.0573 (11)
N20.2895 (5)0.2425 (2)0.5429 (5)0.0717 (16)
H2A0.32090.21450.56120.086*
C20.9263 (10)0.0668 (4)0.1200 (10)0.110 (3)
O30.6180 (5)0.18717 (18)0.8523 (4)0.0833 (16)
N30.4284 (6)0.0859 (3)0.9582 (6)0.0827 (19)
C30.9270 (9)0.0774 (3)0.2471 (10)0.110 (3)
H3A0.99960.08810.28570.132*
O40.4455 (4)0.19201 (16)0.6736 (4)0.0681 (12)
N40.7851 (7)0.1171 (3)0.6646 (8)0.088 (2)
C40.8199 (8)0.0723 (3)0.3176 (7)0.090 (2)
H4A0.82090.08000.40320.108*
O50.4001 (6)0.1286 (2)0.9256 (5)0.0974 (18)
C50.7126 (7)0.0561 (2)0.2624 (6)0.0632 (17)
O60.4965 (5)0.06211 (19)0.8850 (5)0.0908 (16)
C60.7084 (7)0.0448 (3)0.1345 (6)0.085 (2)
H6A0.63710.03260.09630.102*
O70.3892 (6)0.0678 (2)1.0554 (5)0.118 (2)
C70.8180 (10)0.0526 (4)0.0660 (8)0.107 (3)
H7A0.81610.0478−0.02090.129*
C80.4994 (7)0.0337 (2)0.3078 (6)0.0651 (19)
H8A0.49350.01780.23030.078*
O80.8962 (7)0.1137 (3)0.6465 (8)0.148 (3)
O90.7315 (5)0.0961 (2)0.7569 (5)0.0932 (15)
C90.3925 (7)0.0357 (2)0.3828 (6)0.0635 (18)
O100.7174 (5)0.1395 (2)0.5923 (5)0.0983 (17)
C100.2830 (8)0.0150 (3)0.3372 (7)0.082 (2)
H10A0.2832−0.00150.26040.098*
C110.1761 (9)0.0187 (3)0.4042 (8)0.103 (3)
H11A0.10390.00460.37300.124*
C120.1741 (8)0.0431 (3)0.5180 (7)0.089 (2)
H12A0.09990.04590.56170.107*
C130.2790 (6)0.0631 (2)0.5672 (6)0.0599 (17)
C140.3929 (6)0.0600 (2)0.5020 (5)0.0560 (16)
C150.1807 (7)0.0849 (3)0.7610 (7)0.098 (3)
H15B0.16490.05140.78210.147*
H15C0.11000.09840.71830.147*
H30A0.19650.10320.83690.147*
C16−0.1017 (8)0.2383 (4)0.1810 (8)0.135 (4)
H16A−0.11120.27010.14410.203*
H16B−0.17760.22880.22100.203*
H16C−0.08170.21510.11610.203*
C170.0001 (9)0.2395 (3)0.2769 (9)0.1052 (15)
C180.0332 (8)0.2003 (3)0.3448 (8)0.1052 (15)
H18A−0.01000.17140.33200.126*
C190.1278 (9)0.2004 (3)0.4330 (8)0.1052 (15)
H19A0.14520.17250.47990.126*
C200.1959 (9)0.2424 (3)0.4501 (9)0.1052 (15)
C210.1634 (8)0.2822 (3)0.3850 (8)0.105 (3)
H21A0.20630.31140.39670.126*
C220.0648 (8)0.2800 (3)0.2990 (8)0.105 (3)
H22A0.04340.30830.25530.126*
C230.3343 (7)0.2797 (3)0.6043 (6)0.0704 (19)
H23A0.30310.31050.58460.084*
C240.4257 (7)0.2769 (2)0.6977 (6)0.0648 (18)
C250.4601 (8)0.3203 (3)0.7604 (7)0.091 (3)
H25A0.42520.35000.73690.109*
C260.5450 (8)0.3182 (3)0.8558 (7)0.092 (3)
H26A0.56590.34670.89880.111*
C270.6008 (8)0.2744 (3)0.8898 (6)0.081 (2)
H27A0.65980.27370.95400.097*
C280.5685 (7)0.2320 (3)0.8280 (6)0.0646 (18)
C290.4791 (6)0.2322 (2)0.7297 (6)0.0576 (16)
C300.6976 (8)0.1818 (3)0.9596 (7)0.105 (3)
H30B0.72010.21360.99100.158*
H30C0.77090.16440.93550.158*
H30D0.65510.16401.02440.158*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0739 (4)0.0603 (4)0.0524 (3)0.0070 (3)−0.0105 (2)−0.0061 (2)
N10.074 (4)0.060 (3)0.047 (3)0.005 (3)0.000 (3)−0.003 (2)
O10.057 (3)0.108 (4)0.062 (3)−0.009 (3)0.013 (2)−0.016 (3)
C10.154 (11)0.172 (12)0.206 (12)−0.010 (9)0.122 (10)0.007 (10)
O20.057 (3)0.067 (3)0.048 (2)−0.005 (2)−0.003 (2)−0.012 (2)
N20.087 (4)0.056 (4)0.072 (4)0.002 (3)−0.016 (3)0.000 (3)
C20.114 (8)0.111 (8)0.106 (8)0.015 (6)0.059 (7)0.008 (6)
O30.099 (4)0.074 (4)0.076 (3)0.013 (3)−0.043 (3)−0.019 (3)
N30.093 (5)0.099 (6)0.055 (4)0.011 (4)−0.013 (3)0.002 (4)
C30.101 (7)0.096 (7)0.134 (8)−0.018 (5)0.038 (6)−0.008 (6)
O40.080 (3)0.056 (3)0.069 (3)0.002 (2)−0.022 (2)−0.009 (2)
N40.075 (5)0.099 (6)0.090 (5)−0.002 (4)0.001 (4)−0.023 (4)
C40.099 (7)0.096 (6)0.075 (5)−0.008 (5)0.026 (5)−0.006 (4)
O50.128 (5)0.097 (5)0.068 (3)0.024 (4)0.014 (2)−0.012 (3)
C50.073 (5)0.060 (4)0.056 (4)0.014 (4)0.019 (3)0.004 (3)
O60.126 (5)0.078 (3)0.069 (3)0.021 (3)0.010 (3)0.0088 (19)
C60.091 (6)0.108 (6)0.054 (4)0.028 (5)0.008 (4)0.001 (4)
O70.120 (5)0.160 (6)0.074 (4)−0.002 (4)0.021 (3)0.033 (4)
C70.138 (9)0.119 (8)0.065 (5)0.046 (7)0.041 (6)0.012 (5)
C80.102 (6)0.053 (4)0.041 (3)0.000 (4)−0.003 (4)−0.004 (3)
O80.069 (5)0.185 (8)0.190 (8)0.017 (4)−0.015 (5)−0.039 (5)
O90.086 (2)0.099 (4)0.095 (4)0.027 (3)−0.017 (3)−0.006 (3)
C90.088 (5)0.053 (4)0.049 (4)−0.006 (4)−0.002 (3)−0.004 (3)
O100.074 (4)0.129 (5)0.092 (4)0.000 (4)−0.020 (3)0.018 (4)
C100.097 (7)0.078 (5)0.070 (5)−0.020 (5)−0.010 (4)−0.020 (4)
C110.092 (7)0.118 (8)0.100 (7)−0.039 (6)−0.005 (5)−0.007 (6)
C120.079 (6)0.103 (7)0.084 (5)−0.025 (5)−0.003 (4)−0.001 (5)
C130.055 (4)0.067 (5)0.058 (4)−0.004 (3)0.005 (3)−0.002 (3)
C140.076 (5)0.047 (4)0.045 (3)−0.003 (3)−0.004 (3)0.001 (3)
C150.076 (6)0.126 (8)0.091 (6)0.003 (5)0.028 (4)−0.021 (5)
C160.098 (8)0.212 (13)0.097 (7)0.001 (7)−0.038 (6)−0.023 (7)
C170.121 (4)0.090 (4)0.104 (3)−0.013 (3)−0.045 (3)−0.003 (3)
C180.121 (4)0.090 (4)0.104 (3)−0.013 (3)−0.045 (3)−0.003 (3)
C190.121 (4)0.090 (4)0.104 (3)−0.013 (3)−0.045 (3)−0.003 (3)
C200.121 (4)0.090 (4)0.104 (3)−0.013 (3)−0.045 (3)−0.003 (3)
C210.113 (7)0.086 (6)0.116 (7)−0.010 (5)−0.053 (6)0.017 (5)
C220.098 (7)0.109 (8)0.108 (7)0.006 (5)−0.041 (5)0.019 (5)
C230.078 (5)0.057 (5)0.076 (5)0.012 (4)−0.006 (4)0.001 (4)
C240.082 (5)0.060 (4)0.053 (4)−0.001 (4)−0.015 (4)0.000 (3)
C250.131 (8)0.058 (5)0.083 (5)−0.003 (4)−0.031 (5)−0.005 (4)
C260.122 (8)0.066 (5)0.089 (6)−0.011 (5)−0.020 (5)−0.018 (4)
C270.107 (7)0.079 (6)0.056 (4)−0.015 (5)−0.021 (4)−0.012 (4)
C280.069 (5)0.074 (5)0.051 (4)−0.001 (4)−0.004 (3)−0.008 (3)
C290.060 (4)0.057 (4)0.056 (4)−0.001 (3)−0.003 (3)−0.006 (3)
C300.125 (8)0.107 (7)0.083 (5)0.019 (6)−0.048 (5)−0.013 (5)

Geometric parameters (Å, °)

Cd1—O22.204 (4)C9—C101.397 (9)
Cd1—O42.205 (4)C9—C141.426 (8)
Cd1—O62.350 (5)C10—C111.361 (11)
Cd1—O92.361 (5)C10—H10A0.9300
Cd1—O32.500 (5)C11—C121.377 (11)
Cd1—O52.538 (5)C11—H11A0.9300
Cd1—O102.569 (6)C12—C131.360 (9)
N1—C81.288 (8)C12—H12A0.9300
N1—C51.421 (8)C13—C141.416 (9)
N1—H1D0.8600C15—H15B0.9600
O1—C131.366 (7)C15—H15C0.9600
O1—C151.452 (7)C15—H30A0.9600
C1—C21.488 (11)C16—C171.495 (11)
C1—H1A0.9600C16—H16A0.9600
C1—H1B0.9600C16—H16B0.9600
C1—H1C0.9600C16—H16C0.9600
O2—C141.304 (7)C17—C221.330 (11)
N2—C231.299 (8)C17—C181.337 (12)
N2—C201.407 (9)C18—C191.381 (11)
N2—H2A0.8600C18—H18A0.9300
C2—C71.356 (12)C19—C201.376 (12)
C2—C31.376 (12)C19—H19A0.9300
O3—C281.361 (8)C20—C211.334 (11)
O3—C301.429 (8)C21—C221.400 (10)
N3—O71.220 (7)C21—H21A0.9300
N3—O61.253 (7)C22—H22A0.9300
N3—O51.254 (8)C23—C241.397 (9)
C3—C41.386 (10)C23—H23A0.9300
C3—H3A0.9300C24—C291.394 (9)
O4—C291.299 (7)C24—C251.407 (9)
N4—O81.219 (9)C25—C261.362 (10)
N4—O101.222 (9)C25—H25A0.9300
N4—O91.274 (8)C26—C271.390 (10)
C4—C51.371 (10)C26—H26A0.9300
C4—H4A0.9300C27—C281.374 (9)
C5—C61.389 (9)C27—H27A0.9300
C6—C71.407 (11)C28—C291.418 (9)
C6—H6A0.9300C30—H30B0.9600
C7—H7A0.9300C30—H30C0.9600
C8—C91.404 (9)C30—H30D0.9600
C8—H8A0.9300
O2—Cd1—O4101.81 (15)C11—C10—C9120.6 (7)
O2—Cd1—O6104.42 (17)C11—C10—H10A119.7
O4—Cd1—O6136.58 (18)C9—C10—H10A119.7
O2—Cd1—O996.59 (17)C10—C11—C12120.6 (8)
O4—Cd1—O9130.3 (2)C10—C11—H11A119.7
O6—Cd1—O980.0 (2)C12—C11—H11A119.7
O2—Cd1—O3153.63 (17)C13—C12—C11120.9 (8)
O4—Cd1—O368.35 (15)C13—C12—H12A119.5
O6—Cd1—O398.63 (18)C11—C12—H12A119.5
O9—Cd1—O374.81 (18)C12—C13—O1126.0 (6)
O2—Cd1—O5133.35 (18)C12—C13—C14120.9 (6)
O4—Cd1—O585.23 (18)O1—C13—C14113.1 (5)
O6—Cd1—O551.73 (17)O2—C14—C13122.1 (5)
O9—Cd1—O5113.7 (2)O2—C14—C9120.5 (6)
O3—Cd1—O571.77 (19)C13—C14—C9117.3 (6)
O2—Cd1—O1076.28 (18)O1—C15—H15B109.5
O4—Cd1—O1089.88 (18)O1—C15—H15C109.5
O6—Cd1—O10129.65 (19)H15B—C15—H15C109.5
O9—Cd1—O1050.56 (19)O1—C15—H30A109.5
O3—Cd1—O1079.22 (19)H15B—C15—H30A109.5
O5—Cd1—O10150.3 (2)H15C—C15—H30A109.5
C8—N1—C5127.6 (6)C17—C16—H16A109.5
C8—N1—H1D116.2C17—C16—H16B109.5
C5—N1—H1D116.2H16A—C16—H16B109.5
C13—O1—C15116.0 (5)C17—C16—H16C109.5
C2—C1—H1A109.5H16A—C16—H16C109.5
C2—C1—H1B109.5H16B—C16—H16C109.5
H1A—C1—H1B109.5C22—C17—C18115.6 (8)
C2—C1—H1C109.5C22—C17—C16121.5 (9)
H1A—C1—H1C109.5C18—C17—C16122.9 (9)
H1B—C1—H1C109.5C17—C18—C19123.9 (9)
C14—O2—Cd1129.0 (4)C17—C18—H18A118.0
C23—N2—C20128.0 (7)C19—C18—H18A118.0
C23—N2—H2A116.0C20—C19—C18118.9 (9)
C20—N2—H2A116.0C20—C19—H19A120.5
C7—C2—C3118.3 (8)C18—C19—H19A120.5
C7—C2—C1119.1 (10)C21—C20—C19118.2 (9)
C3—C2—C1122.2 (11)C21—C20—N2123.2 (8)
C28—O3—C30118.5 (6)C19—C20—N2118.4 (8)
C28—O3—Cd1113.5 (4)C20—C21—C22120.0 (9)
C30—O3—Cd1126.9 (5)C20—C21—H21A120.0
O7—N3—O6121.2 (8)C22—C21—H21A120.0
O7—N3—O5121.6 (7)C17—C22—C21123.2 (9)
O6—N3—O5117.2 (6)C17—C22—H22A118.4
C2—C3—C4120.3 (9)C21—C22—H22A118.4
C2—C3—H3A119.9N2—C23—C24125.0 (7)
C4—C3—H3A119.9N2—C23—H23A117.5
C29—O4—Cd1122.5 (4)C24—C23—H23A117.5
O8—N4—O10121.9 (8)C29—C24—C23120.6 (6)
O8—N4—O9122.4 (9)C29—C24—C25121.1 (6)
O10—N4—O9115.7 (7)C23—C24—C25118.3 (7)
C5—C4—C3120.6 (8)C26—C25—C24119.4 (7)
C5—C4—H4A119.7C26—C25—H25A120.3
C3—C4—H4A119.7C24—C25—H25A120.3
N3—O5—Cd191.0 (4)C25—C26—C27121.2 (7)
C4—C5—C6120.8 (7)C25—C26—H26A119.4
C4—C5—N1118.3 (6)C27—C26—H26A119.4
C6—C5—N1120.9 (7)C28—C27—C26119.7 (7)
N3—O6—Cd1100.1 (4)C28—C27—H27A120.2
C5—C6—C7116.4 (8)C26—C27—H27A120.2
C5—C6—H6A121.8O3—C28—C27124.7 (7)
C7—C6—H6A121.8O3—C28—C29114.1 (6)
C2—C7—C6123.5 (8)C27—C28—C29121.2 (7)
C2—C7—H7A118.3O4—C29—C24121.1 (6)
C6—C7—H7A118.3O4—C29—C28121.4 (6)
N1—C8—C9124.7 (6)C24—C29—C28117.5 (6)
N1—C8—H8A117.6O3—C30—H30B109.5
C9—C8—H8A117.6O3—C30—H30C109.5
N4—O9—Cd1101.2 (5)H30B—C30—H30C109.5
C10—C9—C8119.0 (6)O3—C30—H30D109.5
C10—C9—C14119.7 (7)H30B—C30—H30D109.5
C8—C9—C14121.3 (6)H30C—C30—H30D109.5
N4—O10—Cd192.5 (5)
O4—Cd1—O2—C14−75.0 (5)N1—C8—C9—C140.9 (11)
O6—Cd1—O2—C1470.1 (5)O8—N4—O10—Cd1179.5 (7)
O9—Cd1—O2—C14151.4 (5)O9—N4—O10—Cd12.0 (7)
O3—Cd1—O2—C14−139.7 (5)O2—Cd1—O10—N4−112.0 (5)
O5—Cd1—O2—C1419.6 (6)O4—Cd1—O10—N4145.9 (5)
O10—Cd1—O2—C14−161.9 (5)O6—Cd1—O10—N4−14.4 (6)
O2—Cd1—O3—C2874.8 (6)O9—Cd1—O10—N4−1.2 (4)
O4—Cd1—O3—C282.5 (4)O3—Cd1—O10—N477.9 (5)
O6—Cd1—O3—C28−134.4 (5)O5—Cd1—O10—N465.7 (7)
O9—Cd1—O3—C28148.5 (5)C8—C9—C10—C11−176.4 (7)
O5—Cd1—O3—C28−89.6 (5)C14—C9—C10—C111.5 (11)
O10—Cd1—O3—C2896.7 (5)C9—C10—C11—C120.2 (14)
O2—Cd1—O3—C30−117.5 (6)C10—C11—C12—C13−1.5 (14)
O4—Cd1—O3—C30170.3 (7)C11—C12—C13—O1−179.6 (7)
O6—Cd1—O3—C3033.4 (6)C11—C12—C13—C141.0 (12)
O9—Cd1—O3—C30−43.7 (6)C15—O1—C13—C1211.0 (10)
O5—Cd1—O3—C3078.2 (6)C15—O1—C13—C14−169.6 (6)
O10—Cd1—O3—C30−95.5 (6)Cd1—O2—C14—C13−2.6 (8)
C7—C2—C3—C41.7 (15)Cd1—O2—C14—C9177.4 (4)
C1—C2—C3—C4174.4 (9)C12—C13—C14—O2−179.3 (6)
O2—Cd1—O4—C29−155.5 (5)O1—C13—C14—O21.2 (9)
O6—Cd1—O4—C2978.3 (5)C12—C13—C14—C90.7 (10)
O9—Cd1—O4—C29−46.1 (6)O1—C13—C14—C9−178.7 (5)
O3—Cd1—O4—C29−1.1 (5)C10—C9—C14—O2178.1 (6)
O5—Cd1—O4—C2971.2 (5)C8—C9—C14—O2−4.1 (9)
O10—Cd1—O4—C29−79.5 (5)C10—C9—C14—C13−1.9 (9)
C2—C3—C4—C50.9 (14)C8—C9—C14—C13175.9 (6)
O7—N3—O5—Cd1−178.1 (7)C22—C17—C18—C19−0.1 (17)
O6—N3—O5—Cd10.2 (7)C16—C17—C18—C19179.2 (9)
O2—Cd1—O5—N371.9 (5)C17—C18—C19—C20−2.3 (17)
O4—Cd1—O5—N3173.6 (5)C18—C19—C20—C213.3 (16)
O6—Cd1—O5—N3−0.2 (4)C18—C19—C20—N2178.1 (9)
O9—Cd1—O5—N3−54.1 (5)C23—N2—C20—C2120.2 (15)
O3—Cd1—O5—N3−117.6 (5)C23—N2—C20—C19−154.3 (9)
O10—Cd1—O5—N3−105.0 (5)C19—C20—C21—C22−1.9 (16)
C3—C4—C5—C6−0.5 (12)N2—C20—C21—C22−176.5 (9)
C3—C4—C5—N1−179.1 (7)C18—C17—C22—C211.5 (17)
C8—N1—C5—C4−173.1 (7)C16—C17—C22—C21−177.8 (9)
C8—N1—C5—C68.2 (10)C20—C21—C22—C17−0.5 (17)
O7—N3—O6—Cd1178.0 (6)C20—N2—C23—C24178.5 (8)
O5—N3—O6—Cd1−0.3 (8)N2—C23—C24—C291.8 (12)
O2—Cd1—O6—N3−134.3 (4)N2—C23—C24—C25−176.7 (7)
O4—Cd1—O6—N3−8.9 (6)C29—C24—C25—C26−1.5 (12)
O9—Cd1—O6—N3131.4 (5)C23—C24—C25—C26177.1 (8)
O3—Cd1—O6—N358.6 (5)C24—C25—C26—C271.9 (14)
O5—Cd1—O6—N30.2 (4)C25—C26—C27—C28−1.2 (13)
O10—Cd1—O6—N3141.8 (4)C30—O3—C28—C278.4 (11)
C4—C5—C6—C7−2.2 (11)Cd1—O3—C28—C27177.3 (6)
N1—C5—C6—C7176.4 (6)C30—O3—C28—C29−172.4 (6)
C3—C2—C7—C6−4.7 (16)Cd1—O3—C28—C29−3.6 (7)
C1—C2—C7—C6−177.7 (8)C26—C27—C28—O3179.2 (7)
C5—C6—C7—C25.0 (13)C26—C27—C28—C290.1 (11)
C5—N1—C8—C9−172.6 (6)Cd1—O4—C29—C24−178.6 (5)
O8—N4—O9—Cd1−179.7 (7)Cd1—O4—C29—C28−0.5 (8)
O10—N4—O9—Cd1−2.2 (8)C23—C24—C29—O40.1 (10)
O2—Cd1—O9—N467.4 (4)C25—C24—C29—O4178.6 (7)
O4—Cd1—O9—N4−44.2 (5)C23—C24—C29—C28−178.1 (6)
O6—Cd1—O9—N4170.9 (5)C25—C24—C29—C280.4 (10)
O3—Cd1—O9—N4−87.2 (4)O3—C28—C29—O42.9 (9)
O5—Cd1—O9—N4−148.9 (4)C27—C28—C29—O4−177.9 (6)
O10—Cd1—O9—N41.2 (4)O3—C28—C29—C24−178.9 (6)
N1—C8—C9—C10178.8 (6)C27—C28—C29—C240.3 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···O20.861.942.616 (6)135
N2—H2A···O40.861.902.577 (7)135

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2640).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Woźniak, K. (2003). Chem. Eur. J.9, 963–970. [PubMed]
  • Elmali, A., Elerman, Y., Zeyrek, C. T. & Svobod, I. (2003). Z. Naturforsch. Teil B, 58, 433–437.
  • Filarowski, A., Koll, A., Glowiak, T., Majewski, E. & Dziembowska, T. (1998). Ber. Bunsenges. Phys. Chem.102, 393–402.
  • Müller, R. M., Robson, R. & Separovic, S. (2001). Angew. Chem. Int. Ed.40, 4385–4386. [PubMed]
  • Novitchi, G., Costes, J. P., Tuchagues, J. P., Vendierb, L. & Wernsdorfer, W. (2008). New J. Chem.32, 197–200.
  • Schiff, H. (1864). Justus Liebigs Ann. Chem.131, 118–119.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • West, B. O. (1960). J. Chem. Soc. pp. 4944–4947.
  • Woźniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans.91, 77–85.
  • Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem.26, 1395–1402.
  • Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.
  • Zhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43–m44.
  • Zhou, M. D., Zhao, J., Li, J., Yue, S., Bao, C. N., Mink, J., Zang, S. L. & Kühn, F. E. (2007). Chem. Eur. J.13, 158–166. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography