PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2225.
Published online 2008 October 31. doi:  10.1107/S1600536808034764
PMCID: PMC2959624

1-[6-(Hydroxy­meth­yl)-2-pyrid­yl]-3-(2,4,6-trimethyl­benz­yl)-1H-imidazol-3-ium bromide

Abstract

In the title compound, C19H22N3O+·Br, the imidazole ring is approximately coplanar with the pyridine ring [dihedral angle = 0.88 (13)°] and nearly perpendicular to the benzene ring [dihedral angle = 81.70 (13)°]. O—H(...)Br and C—H(...)Br hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Liddle et al. (2007 [triangle]); Ren et al. (2007 [triangle]); Arnold & Wilson (2007 [triangle]); Chianese & Crabtree (2005 [triangle]); Dyson et al. (2008 [triangle]); Patel et al. (2006 [triangle]). For synthesis, see: Hosseinzadeh et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2225-scheme1.jpg

Experimental

Crystal data

  • C19H22N3O+·Br
  • M r = 388.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2225-efi1.jpg
  • a = 11.2315 (3) Å
  • b = 11.5390 (3) Å
  • c = 14.3673 (4) Å
  • β = 100.833 (2)°
  • V = 1828.82 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.26 mm−1
  • T = 296 (2) K
  • 0.50 × 0.48 × 0.40 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.320, T max = 0.405
  • 13818 measured reflections
  • 4184 independent reflections
  • 2287 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.116
  • S = 1.01
  • 4184 reflections
  • 220 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034764/xu2459sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034764/xu2459Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of this work by the Natural Science Foundation of Sichuan Province of China is gratefully acknowledged.

supplementary crystallographic information

Comment

The range of N-heterocyclic carbenes (NHCs) is expanding rapidly since many homogeneous catalysts rely on NHC-based supporting ligands for steric and electronic control. Recently the study of [C, O] chelating NHC ligands have attracted increasing attention. The bonding between the NHC and metal can be enhanced by alkoxide or phenoxide as a sidearm through the incorporation of chelating anionic oxygen (Liddle et al., 2007; Ren et al., 2007). These kind of ligands are of great significance to early metal catalysis and carbene chemistry (Arnold & Wilson, 2007; Chianese & Crabtree, 2005; Dyson et al., 2008; Patel et al., 2006). The title compound, a stable precursor imidazolium salt of a tridentate alkoxide-functionalized NHC ligands, was synthesized in moderate yield by reacting [6-(1H-imidazol-1-yl)pyridin-2-yl]methanol with 2-(bromomethyl)-1,3,5-trimethylbenzene in acetonitrile.

In the title compound (Fig. 1), the pyridine and imidazole rings are coplanar, the dihedral angle between the plane of the pyridine ring and the plane of the imidazole ring is 0.88°. In addition, the dihedral angle between the imidazole ring and the benzene ring is 81.70 °. This might be a result of intermolecular O—H···Br interactions and steric effects. The O—H···Br and C—H···Br hydrogen bonding (Table 1) helps to stabilize the crystal structure.

Experimental

[6-(1H-Imidazol-1-yl)pyridin-2-yl]methanol was prepared with the reported methods (Hosseinzadeh et al., 2006). The title compound was synthesized by dissolving [6-(1H-imidazol-1-yl)pyridin-2-yl]methanol (0.35 g, 2.0 mmol) and 2-(bromomethyl)-1,3,5-trimethylbenzene (0.85 g, 4.0 mmol) in 10 ml of acetonitrile. The mixture was stirred at 333 K for 15 h and the resulting precipitate was filtered, washed with ether. After removal of the solvent in vacuo the off-white crude product was purified by flash chromatography (CH2Cl2/CH3OH (5/1, v/v)) to afford the product as a white solid (0.60 g, 77%). Colorless single crystals suitable for X-ray diffraction were obtained at ambient temperature by slow evaporation of a CH2Cl2/CH3OH solution (5/1, v/v)) over a period of several days.

Refinement

All H atom were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and O—H = 0.82 Å, and refined using a riding model with 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,O) for others.

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates the O—H···Br hydrogen bonding.

Crystal data

C19H22N3O+·BrF(000) = 800
Mr = 388.31Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3980 reflections
a = 11.2315 (3) Åθ = 2.8–26.7°
b = 11.5390 (3) ŵ = 2.26 mm1
c = 14.3673 (4) ÅT = 296 K
β = 100.833 (2)°Block, colourless
V = 1828.82 (9) Å30.50 × 0.48 × 0.40 mm
Z = 4

Data collection

Bruker SAMRT CCD area-detector diffractometer4184 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.320, Tmax = 0.405k = −13→14
13818 measured reflectionsl = −17→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.05P)2 + 0.57P] where P = (Fo2 + 2Fc2)/3
4184 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.28302 (3)0.00291 (3)−0.05646 (2)0.05606 (10)
O1−0.21350 (16)0.2315 (2)0.07160 (15)0.0662 (7)
H1A−0.24780.19200.02710.099*
N10.09397 (17)0.27426 (17)0.18365 (14)0.0321 (5)
N20.28135 (17)0.30337 (16)0.27893 (14)0.0305 (5)
N30.44633 (17)0.20953 (17)0.27441 (14)0.0334 (5)
C10.1546 (2)0.3348 (2)0.25443 (17)0.0316 (6)
C20.1075 (2)0.4190 (2)0.3045 (2)0.0445 (8)
H2A0.15470.45740.35530.053*
C3−0.0135 (3)0.4434 (3)0.2752 (2)0.0531 (9)
H3A−0.05070.49890.30680.064*
C4−0.0795 (2)0.3852 (2)0.1986 (2)0.0444 (8)
H4A−0.16060.40340.17640.053*
C5−0.0234 (2)0.2998 (2)0.15572 (18)0.0356 (7)
C6−0.0886 (2)0.2276 (2)0.0752 (2)0.0445 (8)
H6A−0.07030.25630.01600.053*
H6B−0.06080.14800.08320.053*
C70.3316 (2)0.2205 (2)0.23424 (18)0.0346 (6)
H7A0.29190.17750.18300.042*
C80.3694 (2)0.3481 (2)0.34984 (18)0.0380 (7)
H8A0.35980.40750.39160.046*
C90.4719 (2)0.2892 (2)0.34690 (18)0.0384 (7)
H9A0.54660.30020.38660.046*
C100.5327 (2)0.1277 (2)0.24373 (18)0.0376 (7)
H10A0.58770.17070.21210.045*
H10B0.48800.07400.19820.045*
C110.6055 (2)0.0601 (2)0.32432 (17)0.0312 (6)
C120.7292 (2)0.0816 (2)0.35423 (17)0.0320 (6)
C130.7950 (2)0.0118 (2)0.42336 (17)0.0339 (6)
H13A0.87750.02610.44270.041*
C140.7435 (2)−0.0781 (2)0.46487 (18)0.0368 (7)
C150.6197 (2)−0.0969 (2)0.43645 (18)0.0370 (7)
H15A0.5830−0.15630.46450.044*
C160.5498 (2)−0.0293 (2)0.36734 (18)0.0336 (7)
C170.4158 (2)−0.0533 (3)0.3403 (2)0.0470 (8)
H17A0.3971−0.12410.36960.070*
H17B0.3935−0.06040.27270.070*
H17C0.37130.00940.36150.070*
C180.7936 (2)0.1776 (2)0.3128 (2)0.0466 (8)
H18A0.87920.17210.33670.070*
H18B0.76430.25110.33030.070*
H18C0.77830.17080.24500.070*
C190.8180 (3)−0.1551 (3)0.5387 (2)0.0521 (8)
H19A0.9026−0.13850.54230.078*
H19B0.8026−0.23480.52150.078*
H19C0.7963−0.14080.59920.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0685 (2)0.04819 (17)0.04329 (16)−0.00279 (17)−0.01057 (14)−0.00348 (15)
O10.0395 (11)0.0820 (15)0.0724 (15)−0.0069 (11)−0.0020 (11)−0.0294 (12)
N10.0311 (11)0.0305 (11)0.0330 (12)−0.0008 (9)0.0022 (9)0.0017 (9)
N20.0304 (11)0.0302 (11)0.0296 (11)0.0007 (9)0.0021 (9)0.0001 (9)
N30.0290 (11)0.0338 (11)0.0346 (12)0.0002 (9)−0.0014 (9)0.0000 (9)
C10.0312 (13)0.0309 (13)0.0324 (14)0.0006 (11)0.0049 (11)0.0053 (11)
C20.0388 (15)0.0424 (15)0.0495 (17)0.0016 (13)0.0011 (13)−0.0122 (13)
C30.0433 (17)0.0473 (16)0.068 (2)0.0062 (14)0.0089 (15)−0.0158 (16)
C40.0314 (14)0.0379 (15)0.0611 (19)0.0021 (12)0.0015 (13)−0.0063 (14)
C50.0373 (14)0.0316 (13)0.0365 (15)−0.0057 (11)0.0031 (12)0.0074 (11)
C60.0367 (15)0.0509 (17)0.0420 (16)−0.0047 (13)−0.0029 (13)−0.0032 (14)
C70.0336 (14)0.0359 (14)0.0319 (14)−0.0010 (12)−0.0001 (11)−0.0012 (12)
C80.0393 (14)0.0377 (14)0.0341 (15)−0.0042 (12)0.0000 (12)−0.0040 (12)
C90.0355 (14)0.0402 (15)0.0360 (15)−0.0055 (12)−0.0023 (12)−0.0051 (12)
C100.0335 (14)0.0437 (15)0.0342 (15)0.0039 (12)0.0030 (12)−0.0027 (12)
C110.0303 (13)0.0309 (13)0.0317 (14)0.0014 (11)0.0042 (11)−0.0022 (11)
C120.0311 (13)0.0320 (13)0.0336 (14)−0.0019 (11)0.0077 (11)−0.0022 (11)
C130.0246 (12)0.0404 (15)0.0356 (13)−0.0004 (12)0.0031 (10)−0.0022 (12)
C140.0416 (15)0.0386 (14)0.0306 (14)0.0082 (12)0.0073 (12)0.0002 (12)
C150.0408 (14)0.0341 (14)0.0383 (15)−0.0060 (12)0.0131 (12)0.0037 (12)
C160.0325 (13)0.0332 (14)0.0359 (14)−0.0008 (11)0.0087 (11)−0.0080 (11)
C170.0353 (15)0.0474 (16)0.0582 (19)−0.0060 (13)0.0088 (14)−0.0031 (15)
C180.0364 (15)0.0491 (17)0.0519 (18)−0.0067 (13)0.0018 (13)0.0090 (14)
C190.0507 (17)0.0587 (18)0.0465 (18)0.0092 (15)0.0079 (14)0.0163 (15)

Geometric parameters (Å, °)

O1—C61.394 (3)C10—C111.504 (3)
O1—H1A0.8200C10—H10A0.9700
N1—C11.314 (3)C10—H10B0.9700
N1—C51.336 (3)C11—C121.398 (3)
N2—C71.335 (3)C11—C161.408 (4)
N2—C81.380 (3)C12—C131.380 (3)
N2—C11.447 (3)C12—C181.505 (4)
N3—C71.315 (3)C13—C141.377 (4)
N3—C91.378 (3)C13—H13A0.9300
N3—C101.479 (3)C14—C151.390 (3)
C1—C21.372 (4)C14—C191.510 (4)
C2—C31.373 (4)C15—C161.385 (3)
C2—H2A0.9300C15—H15A0.9300
C3—C41.380 (4)C16—C171.509 (3)
C3—H3A0.9300C17—H17A0.9600
C4—C51.377 (4)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.500 (3)C18—H18A0.9600
C6—H6A0.9700C18—H18B0.9600
C6—H6B0.9700C18—H18C0.9600
C7—H7A0.9300C19—H19A0.9600
C8—C91.344 (3)C19—H19B0.9600
C8—H8A0.9300C19—H19C0.9600
C9—H9A0.9300
C6—O1—H1A109.5C11—C10—H10A108.9
C1—N1—C5117.0 (2)N3—C10—H10B108.9
C7—N2—C8108.3 (2)C11—C10—H10B108.9
C7—N2—C1123.3 (2)H10A—C10—H10B107.8
C8—N2—C1128.4 (2)C12—C11—C16119.5 (2)
C7—N3—C9108.4 (2)C12—C11—C10120.7 (2)
C7—N3—C10125.0 (2)C16—C11—C10119.8 (2)
C9—N3—C10126.6 (2)C13—C12—C11119.0 (2)
N1—C1—C2126.0 (2)C13—C12—C18118.8 (2)
N1—C1—N2113.4 (2)C11—C12—C18122.2 (2)
C2—C1—N2120.6 (2)C14—C13—C12122.6 (2)
C1—C2—C3116.2 (2)C14—C13—H13A118.7
C1—C2—H2A121.9C12—C13—H13A118.7
C3—C2—H2A121.9C13—C14—C15117.9 (2)
C2—C3—C4119.8 (3)C13—C14—C19121.6 (2)
C2—C3—H3A120.1C15—C14—C19120.4 (2)
C4—C3—H3A120.1C16—C15—C14121.5 (2)
C5—C4—C3118.8 (3)C16—C15—H15A119.2
C5—C4—H4A120.6C14—C15—H15A119.2
C3—C4—H4A120.6C15—C16—C11119.3 (2)
N1—C5—C4122.1 (2)C15—C16—C17119.0 (2)
N1—C5—C6114.9 (2)C11—C16—C17121.7 (2)
C4—C5—C6123.0 (2)C16—C17—H17A109.5
O1—C6—C5110.7 (2)C16—C17—H17B109.5
O1—C6—H6A109.5H17A—C17—H17B109.5
C5—C6—H6A109.5C16—C17—H17C109.5
O1—C6—H6B109.5H17A—C17—H17C109.5
C5—C6—H6B109.5H17B—C17—H17C109.5
H6A—C6—H6B108.1C12—C18—H18A109.5
N3—C7—N2109.0 (2)C12—C18—H18B109.5
N3—C7—H7A125.5H18A—C18—H18B109.5
N2—C7—H7A125.5C12—C18—H18C109.5
C9—C8—N2106.7 (2)H18A—C18—H18C109.5
C9—C8—H8A126.7H18B—C18—H18C109.5
N2—C8—H8A126.7C14—C19—H19A109.5
C8—C9—N3107.6 (2)C14—C19—H19B109.5
C8—C9—H9A126.2H19A—C19—H19B109.5
N3—C9—H9A126.2C14—C19—H19C109.5
N3—C10—C11113.2 (2)H19A—C19—H19C109.5
N3—C10—H10A108.9H19B—C19—H19C109.5
C5—N1—C1—C22.5 (4)C7—N3—C9—C80.4 (3)
C5—N1—C1—N2−178.8 (2)C10—N3—C9—C8178.4 (2)
C7—N2—C1—N1−0.3 (3)C7—N3—C10—C11−132.4 (2)
C8—N2—C1—N1−179.0 (2)C9—N3—C10—C1149.8 (3)
C7—N2—C1—C2178.5 (2)N3—C10—C11—C12−109.5 (3)
C8—N2—C1—C2−0.2 (4)N3—C10—C11—C1673.4 (3)
N1—C1—C2—C3−2.0 (4)C16—C11—C12—C132.1 (4)
N2—C1—C2—C3179.4 (2)C10—C11—C12—C13−175.0 (2)
C1—C2—C3—C4−0.8 (4)C16—C11—C12—C18−178.5 (2)
C2—C3—C4—C52.8 (4)C10—C11—C12—C184.4 (4)
C1—N1—C5—C4−0.2 (4)C11—C12—C13—C14−0.5 (4)
C1—N1—C5—C6−179.6 (2)C18—C12—C13—C14−179.8 (2)
C3—C4—C5—N1−2.4 (4)C12—C13—C14—C15−1.2 (4)
C3—C4—C5—C6177.0 (3)C12—C13—C14—C19178.5 (2)
N1—C5—C6—O1160.1 (2)C13—C14—C15—C161.2 (4)
C4—C5—C6—O1−19.3 (4)C19—C14—C15—C16−178.5 (3)
C9—N3—C7—N2−0.9 (3)C14—C15—C16—C110.4 (4)
C10—N3—C7—N2−179.0 (2)C14—C15—C16—C17−179.4 (2)
C8—N2—C7—N31.0 (3)C12—C11—C16—C15−2.1 (4)
C1—N2—C7—N3−177.9 (2)C10—C11—C16—C15175.0 (2)
C7—N2—C8—C9−0.8 (3)C12—C11—C16—C17177.7 (2)
C1—N2—C8—C9178.1 (2)C10—C11—C16—C17−5.2 (4)
N2—C8—C9—N30.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···Br10.822.493.227 (2)151
C7—H7A···Br1i0.932.753.598 (2)152
C8—H8A···Br1ii0.932.893.745 (2)154
C10—H10B···Br1i0.972.913.813 (2)155

Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2459).

References

  • Arnold, P. L. & Wilson, C. (2007). Inorg. Chim. Acta, 360, 190–196.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chianese, A. R. & Crabtree, R. H. (2005). Organometallics, 24, 4432–4436.
  • Dyson, G., Frison, J., Simonovic, S., Whitwood, A. C. & Douthwaite, R. E. (2008). Organometallics, 27, 281–288.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hosseinzadeh, R., Tajbakhsh, M. & Alikarami, M. (2006). Tetrahedron Lett.47, 5203–5205.
  • Liddle, S. T., Edworthy, I. S. & Arnold, P. L. (2007). Chem. Soc. Rev.36, 1732–1744. [PubMed]
  • Patel, D., Liddle, S. T., Mungur, S. A., Rodden, M., Blake, A. J. & Arnold, P. L. (2006). Chem. Commun.6, 1124–1126. [PubMed]
  • Ren, H. P., Yao, P. Y., Xu, S. S., Song, H. B. & Wang, B. Q. (2007). J. Organomet. Chem.692, 2092–2098.
  • Sheldrick, G. M. (1996). SADABS University of Göttinger, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography