PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2063.
Published online 2008 October 4. doi:  10.1107/S1600536808031590
PMCID: PMC2959621

(E)-Methyl N′-(3,4,5-trimethoxy­benzyl­idene)hydrazinecarboxyl­ate

Abstract

The mol­ecule of the title compound, C12H16N2O5, adopts a trans configuration with respect to the C=N double bond. The dihedral angle between the benzene and hydrazinecarboxylic acid methyl ester planes is 12.55 (7)°. The mol­ecules are linked into a chain along [001] by inter­molecular N—H(...)O hydrogen bonds, and the chains are cross-linked into a two-dimensional zigzag structure by C—H(...)O hydrogen bonds.

Related literature

For general background, see: Parashar et al. (1988 [triangle]); Hadjoudis et al. (1987 [triangle]); Borg et al. (1999 [triangle]). For a related structure, see: Shang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2063-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O5
  • M r = 268.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2063-efi1.jpg
  • a = 8.554 (3) Å
  • b = 22.705 (7) Å
  • c = 7.813 (2) Å
  • β = 116.15 (1)°
  • V = 1362.1 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 273 (2) K
  • 0.27 × 0.25 × 0.24 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.965, T max = 0.968
  • 7173 measured reflections
  • 2394 independent reflections
  • 1671 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.133
  • S = 1.03
  • 2394 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031590/ci2687sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031590/ci2687Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). They are important intermidiates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title molecule (Fig.1) adopts a trans configuration with respect to the C═N bond. The hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The dihedral angle between the benzene ring and the C10/C11//N1/N2/O4/O5 plane [r.m.s. deviation 0.051 Å] is 12.55 (7)°. The O1-C1 and O3-C3 methoxy groups are coplanar with the benzene ring [C8—C4—O1—C1 = -1.7 (3)° and C7—C6—O3—C3 = -1.9 (3)°] while the O2-C2 group is twisted almost perpendicular to the attached ring [C6—C5—O2—C2 = 91.6 (2)°]. The bond lengths and angles agree with those observed for N'-(4-methoxybenzylidene)methoxyformohydrazide (Shang et al., 2007).

The molecules are linked into a chain along the [001] by intermolecular N–H···O hydrogen bonds (Fig.2 and Table 1). The chains are cross-linked into a two-dimensional zigzag structure by C—H···O hydrogen bonds.

Experimental

3,4,5-Trimethoxybenzaldehyde (1.96g, 0.01mol) and methyl hydrazinecarboxylate (0.9 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 3.2 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 94% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 472-474 K).

Refinement

H atoms were positioned geometrically [N-H = 0.86 Å and C-H = 0.93 or 0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methy groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C12H16N2O5F(000) = 568
Mr = 268.27Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2394 reflections
a = 8.554 (3) Åθ = 1.8–25.0°
b = 22.705 (7) ŵ = 0.10 mm1
c = 7.813 (2) ÅT = 273 K
β = 116.15 (1)°Block, colourless
V = 1362.1 (7) Å30.27 × 0.25 × 0.24 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2394 independent reflections
Radiation source: fine-focus sealed tube1671 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.965, Tmax = 0.968k = −27→26
7173 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.133w = 1/[σ2(Fo2) + (0.0696P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2394 reflectionsΔρmax = 0.18 e Å3
177 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C110.1250 (2)0.29913 (8)0.4985 (2)0.0442 (5)
C70.5205 (3)0.07771 (8)0.7843 (3)0.0522 (5)
H70.47230.06070.66360.063*
C100.3534 (3)0.16740 (8)0.6404 (3)0.0493 (5)
H100.31710.15080.52010.059*
C90.4743 (2)0.13484 (8)0.8080 (2)0.0467 (5)
C60.6382 (3)0.04596 (8)0.9394 (3)0.0508 (5)
C80.5451 (3)0.16011 (9)0.9895 (2)0.0529 (5)
H80.51300.19801.00670.063*
C40.6637 (3)0.12845 (9)1.1436 (3)0.0526 (5)
C50.7116 (2)0.07116 (8)1.1194 (3)0.0499 (5)
C12−0.0302 (4)0.37985 (10)0.3123 (3)0.0850 (8)
H12A−0.09840.38250.38200.127*
H12B−0.10100.39000.18130.127*
H12C0.06660.40650.36620.127*
C30.6171 (3)−0.03833 (9)0.7485 (3)0.0677 (6)
H3A0.4927−0.03900.70010.102*
H3B0.6600−0.07790.76090.102*
H3C0.6482−0.01690.66200.102*
C10.7014 (4)0.20690 (11)1.3617 (3)0.0986 (10)
H1A0.72530.23401.28180.148*
H1B0.77130.21691.49310.148*
H1C0.58040.20921.33350.148*
C21.0022 (3)0.04729 (13)1.3133 (4)0.0950 (9)
H2A1.01900.03321.20670.143*
H2B1.07520.02541.42530.143*
H2C1.03230.08831.33350.143*
O50.03345 (18)0.32059 (5)0.32345 (16)0.0574 (4)
O40.1466 (2)0.32391 (5)0.64414 (17)0.0632 (5)
O20.82545 (17)0.03987 (6)1.27554 (19)0.0608 (4)
O30.6917 (2)−0.01046 (6)0.9293 (2)0.0670 (5)
O10.7416 (2)0.14863 (6)1.32715 (18)0.0745 (5)
N10.29649 (19)0.21810 (6)0.65536 (19)0.0442 (4)
N20.1871 (2)0.24529 (6)0.4883 (2)0.0492 (4)
H20.15880.22850.38010.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C110.0513 (12)0.0478 (10)0.0312 (9)0.0013 (9)0.0160 (8)−0.0003 (8)
C70.0572 (13)0.0525 (11)0.0440 (11)0.0038 (9)0.0198 (10)0.0014 (8)
C100.0541 (13)0.0511 (11)0.0382 (10)0.0028 (9)0.0162 (9)−0.0023 (8)
C90.0474 (11)0.0509 (11)0.0403 (10)0.0040 (8)0.0180 (9)0.0054 (8)
C60.0510 (12)0.0468 (11)0.0576 (12)0.0075 (9)0.0268 (10)0.0085 (9)
C80.0588 (13)0.0498 (10)0.0445 (11)0.0071 (10)0.0178 (10)0.0048 (8)
C40.0564 (13)0.0591 (12)0.0382 (10)0.0032 (10)0.0171 (9)0.0068 (8)
C50.0466 (11)0.0554 (11)0.0478 (11)0.0073 (9)0.0211 (9)0.0165 (9)
C120.118 (2)0.0590 (14)0.0569 (14)0.0348 (14)0.0188 (14)0.0078 (10)
C30.0801 (17)0.0546 (12)0.0745 (16)0.0101 (11)0.0395 (13)0.0015 (10)
C10.134 (3)0.0820 (17)0.0484 (13)0.0263 (17)0.0111 (15)−0.0086 (11)
C20.0506 (16)0.118 (2)0.101 (2)0.0070 (14)0.0191 (14)0.0537 (17)
O50.0733 (10)0.0556 (8)0.0359 (7)0.0213 (7)0.0174 (7)0.0050 (5)
O40.0951 (12)0.0523 (8)0.0379 (8)0.0124 (7)0.0253 (7)−0.0012 (6)
O20.0523 (9)0.0694 (9)0.0573 (9)0.0100 (7)0.0211 (7)0.0266 (7)
O30.0761 (10)0.0544 (9)0.0661 (10)0.0191 (7)0.0275 (8)0.0098 (7)
O10.0913 (13)0.0709 (10)0.0415 (8)0.0192 (8)0.0111 (8)0.0042 (7)
N10.0497 (10)0.0482 (9)0.0317 (8)0.0036 (7)0.0152 (7)0.0034 (6)
N20.0616 (11)0.0501 (9)0.0296 (7)0.0133 (8)0.0145 (7)0.0004 (6)

Geometric parameters (Å, °)

C11—O41.209 (2)C12—H12A0.96
C11—O51.333 (2)C12—H12B0.96
C11—N21.349 (2)C12—H12C0.96
C7—C61.388 (2)C3—O31.417 (2)
C7—C91.392 (3)C3—H3A0.96
C7—H70.93C3—H3B0.96
C10—N11.275 (2)C3—H3C0.96
C10—C91.462 (2)C1—O11.422 (3)
C10—H100.93C1—H1A0.96
C9—C81.396 (2)C1—H1B0.96
C6—O31.374 (2)C1—H1C0.96
C6—C51.386 (3)C2—O21.417 (3)
C8—C41.386 (2)C2—H2A0.96
C8—H80.93C2—H2B0.96
C4—O11.367 (2)C2—H2C0.96
C4—C51.401 (3)N1—N21.3723 (19)
C5—O21.376 (2)N2—H20.86
C12—O51.439 (2)
O4—C11—O5124.93 (17)H12A—C12—H12C109.5
O4—C11—N2125.21 (16)H12B—C12—H12C109.5
O5—C11—N2109.85 (14)O3—C3—H3A109.5
C6—C7—C9120.45 (17)O3—C3—H3B109.5
C6—C7—H7119.8H3A—C3—H3B109.5
C9—C7—H7119.8O3—C3—H3C109.5
N1—C10—C9121.47 (17)H3A—C3—H3C109.5
N1—C10—H10119.3H3B—C3—H3C109.5
C9—C10—H10119.3O1—C1—H1A109.5
C7—C9—C8119.77 (17)O1—C1—H1B109.5
C7—C9—C10118.81 (16)H1A—C1—H1B109.5
C8—C9—C10121.41 (17)O1—C1—H1C109.5
O3—C6—C5115.43 (16)H1A—C1—H1C109.5
O3—C6—C7124.47 (17)H1B—C1—H1C109.5
C5—C6—C7120.11 (17)O2—C2—H2A109.5
C4—C8—C9119.57 (18)O2—C2—H2B109.5
C4—C8—H8120.2H2A—C2—H2B109.5
C9—C8—H8120.2O2—C2—H2C109.5
O1—C4—C8124.72 (18)H2A—C2—H2C109.5
O1—C4—C5114.63 (16)H2B—C2—H2C109.5
C8—C4—C5120.65 (17)C11—O5—C12116.06 (14)
O2—C5—C6120.91 (17)C5—O2—C2113.36 (15)
O2—C5—C4119.61 (17)C6—O3—C3117.27 (15)
C6—C5—C4119.44 (16)C4—O1—C1117.67 (16)
O5—C12—H12A109.5C10—N1—N2116.53 (14)
O5—C12—H12B109.5C11—N2—N1118.23 (14)
H12A—C12—H12B109.5C11—N2—H2120.9
O5—C12—H12C109.5N1—N2—H2120.9
C6—C7—C9—C8−0.7 (3)C8—C4—C5—O2−177.98 (18)
C6—C7—C9—C10178.45 (18)O1—C4—C5—C6178.96 (17)
N1—C10—C9—C7174.74 (18)C8—C4—C5—C6−0.5 (3)
N1—C10—C9—C8−6.1 (3)O4—C11—O5—C125.6 (3)
C9—C7—C6—O3−179.79 (18)N2—C11—O5—C12−175.51 (18)
C9—C7—C6—C5−0.5 (3)C6—C5—O2—C291.6 (2)
C7—C9—C8—C41.3 (3)C4—C5—O2—C2−91.0 (2)
C10—C9—C8—C4−177.86 (18)C5—C6—O3—C3178.74 (18)
C9—C8—C4—O1179.89 (18)C7—C6—O3—C3−1.9 (3)
C9—C8—C4—C5−0.7 (3)C8—C4—O1—C1−1.7 (3)
O3—C6—C5—O2−2.1 (3)C5—C4—O1—C1178.9 (2)
C7—C6—C5—O2178.52 (17)C9—C10—N1—N2178.42 (17)
O3—C6—C5—C4−179.53 (17)O4—C11—N2—N1−6.2 (3)
C7—C6—C5—C41.1 (3)O5—C11—N2—N1174.90 (15)
O1—C4—C5—O21.5 (3)C10—N1—N2—C11−179.66 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.163.000 (2)166
C2—H2B···O2ii0.962.573.498 (3)161

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y, −z+3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2687).

References

  • Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [PubMed]
  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  • Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201–208.
  • Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography