PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2072–o2073.
Published online 2008 October 4. doi:  10.1107/S1600536808031401
PMCID: PMC2959609

1-Methyl-4-[(E)-2-(2-thien­yl)­ethen­yl]­pyridinium 4-methyl­benzene­sulfonate1

Abstract

In the title compound, C12H12NS+·C7H7O3S, the cation exists in an E configuration with respect to the ethenyl C=C bond. The cation is essentially planar with a dihedral angle of 1.94 (10)° between the pyridinium and thio­phene rings. The benzene ring of the anion makes dihedral angles of 75.23 (10) and 76.83 (10)°, respectively, with the pyridinium and thio­phene rings. In the crystal structure, cations and anions form alternate layers parallel to the bc plane. Within each layer, both cations and anions are arranged into chains directed along the b axis. The cation chain and the anion chain are inter­connected by weak C—H(...)O inter­actions into a three-dimensional network. The crystal structure is further stabilized by C—H(...)π inter­actions.

Related literature

For bond lengths, see: Allen et al. (1987 [triangle]). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see, for example: Chantrapromma, Jindawong & Fun (2007 [triangle]); Chantrapromma, Jindawong, Fun & Patil (2007 [triangle]); Chantrapromma et al. (2008 [triangle]); Lakshmanaperumal et al. (2002 [triangle], 2004 [triangle]); Rahman et al. (2003 [triangle]); Ruanwas et al. (2008 [triangle]); Usman et al. (2000 [triangle], 2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2072-scheme1.jpg

Experimental

Crystal data

  • C12H12NS+·C7H7O3S
  • M r = 373.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2072-efi1.jpg
  • a = 9.2947 (1) Å
  • b = 9.6144 (1) Å
  • c = 10.7790 (1) Å
  • α = 87.817 (1)°
  • β = 64.702 (1)°
  • γ = 88.712 (1)°
  • V = 870.21 (1) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 100.0 (1) K
  • 0.36 × 0.35 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.893, T max = 0.945
  • 18024 measured reflections
  • 4606 independent reflections
  • 4122 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.148
  • S = 1.04
  • 4606 reflections
  • 228 parameters
  • H-atom parameters constrained
  • Δρmax = 0.98 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031401/is2338sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031401/is2338Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Prince of Songkla University for a research grant. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Pyridinium derivatives have been found to have nonlinear optical properties (Lakshmanaperumal et al., 2002, 2004; Usman et al., 2000, 2001). We have previously synthesized and crystallized several compounds of pyridinium and quinolinium derivatives to study their non-linear optical properties (Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Chantrapromma et al., 2008; Ruanwas et al., 2008). As part of our research on nonlinear optic materials, the title compound was synthesized.

The asymmetric unit of the title compound consists of the C12H12NS+ cation and the C7H7O3S- anion. The cation exists in an E configuration with respect to the ethenyl C═C bond [C6═C7 = 1.346 (3) Å]. The cation is essentially planar with a dihedral angle between the pyridinium and thiophene rings of 1.94 (10)°. The orientation of the anion with respect to the cation can be indicated by the interplanar angles between the benzene ring [C13–C18] with the pyridinium [C1–C5/N1] and thiophene [C8—C11/S1] rings of 75.23 (10) and 76.83 (10)°, respectively. The ethenyl unit is nearly coplanar with the pyridinium and thiophene rings with the torsion angles C4–C5–C6–C7 = 3.0 (3)° and C6–C7–C8–S1 = -3.7 (3)°. The atom O3 of the sulfonate and the S1 atom of the thiophene contribute to the weak intramolecular C—H···O and C—H···S interactions, forming S(5) ring motifs (Bernstein et al., 1995). The bond lengths and angles are normal (Allen et al., 1987) and are comparable with closely related structures (Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Chantrapromma et al., 2008; Ruanwas et al., 2008).

All the O atoms of 4-methylbenzenesulfonate anion are involved in the C—H···O weak interactions (Table 1). In the crystal packing (Fig. 2), the cations and anions form alternate layers parallel to the bc plane. Within each layer both cations and anions are arranged into chains directed along the b axis. The cations and anions chains are interconnected by C—H···O weak interactions into a three dimensional network. The crystal structure is further stabilized by the C4—H4A···π and C10—H10A···π interactions (Table 1); Cg1 is the centroid of the C13–C18 benzene ring.

Experimental

The title compound was synthesized by mixing 4-(2-thiophenestyryl)-1-methylpyridinium iodide (0.1 g, 0.3 mmol) which was prepared in a similar manner to that previously reported (Chantrapromma et al., 2008) in hot methanol (40 ml) and p-toluenesulfonate (0.09 g, 0.3 mmol) in hot methanol (30 ml) (Rahman et al., 2003). The mixture immediately yielded a yellow solid of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated and the green-yellow solid was obtained. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from the methanol/ethanol (1:1 v/v) solvent by slow evaporation of the solvent at room temperature after several weeks (m.p. 507–509 K).

Refinement

All H atoms could have been discerned in a difference Fourier map. Nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation with Caryl—H = 0.93 and Cmethyl—H = 0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.01 Å from C6 and the deepest hole is located at 0.33 Å from S1.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The packing diagram of the title compound, viewed along the c axis. The weak C—H···O and C—H···S interactions are drawn as dashed lines.

Crystal data

C12H12NS+·C7H7O3SZ = 2
Mr = 373.49F(000) = 392
Triclinic, P1Dx = 1.425 Mg m3
Hall symbol: -P 1Melting point = 507–509 K
a = 9.2947 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6144 (1) ÅCell parameters from 4606 reflections
c = 10.7790 (1) Åθ = 2.4–29.0°
α = 87.817 (1)°µ = 0.32 mm1
β = 64.702 (1)°T = 100 K
γ = 88.712 (1)°Block, yellow
V = 870.21 (2) Å30.36 × 0.35 × 0.18 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4606 independent reflections
Radiation source: fine-focus sealed tube4122 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 8.33 pixels mm-1θmax = 29.0°, θmin = 2.4°
ω scansh = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −13→13
Tmin = 0.893, Tmax = 0.945l = −14→14
18024 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0809P)2 + 1.1333P] where P = (Fo2 + 2Fc2)/3
4606 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = −0.71 e Å3

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.15733 (7)0.99833 (6)0.16005 (6)0.02891 (16)
S20.55035 (5)0.58728 (4)0.20813 (4)0.01428 (13)
O10.69298 (18)0.61236 (15)0.08113 (15)0.0220 (3)
O20.40517 (17)0.63620 (15)0.19977 (15)0.0194 (3)
O30.56449 (18)0.63482 (14)0.32920 (14)0.0196 (3)
N1−0.0092 (2)0.50151 (17)0.75333 (17)0.0169 (3)
C10.1573 (2)0.6066 (2)0.5395 (2)0.0221 (4)
H1A0.25740.61450.46620.026*
C20.1351 (2)0.5142 (2)0.6456 (2)0.0208 (4)
H2A0.21990.45970.64370.025*
C3−0.1335 (2)0.5809 (2)0.7588 (2)0.0195 (4)
H3A−0.23170.57210.83420.023*
C4−0.1159 (2)0.6742 (2)0.6539 (2)0.0206 (4)
H4A−0.20250.72790.65860.025*
C50.0314 (2)0.6894 (2)0.5397 (2)0.0196 (4)
C60.0632 (2)0.7841 (2)0.4220 (2)0.0220 (4)
H6A0.16430.78270.34970.026*
C7−0.0453 (3)0.8733 (2)0.4121 (2)0.0235 (4)
H7A−0.14610.87190.48490.028*
C8−0.0211 (3)0.9713 (2)0.2998 (2)0.0225 (4)
C9−0.1401 (2)1.0515 (2)0.29383 (19)0.0151 (3)
H9A−0.24541.04890.35910.018*
C10−0.0793 (3)1.1440 (2)0.1689 (2)0.0247 (4)
H10A−0.14171.20860.14740.030*
C110.0787 (3)1.1230 (2)0.0896 (2)0.0262 (4)
H11A0.13671.17090.00700.031*
C12−0.0343 (3)0.3981 (2)0.8657 (2)0.0241 (4)
H12A0.06490.37950.87100.036*
H12B−0.07400.31340.84790.036*
H12C−0.10990.43410.95100.036*
C130.4960 (2)0.1137 (2)0.2619 (2)0.0178 (4)
C140.5220 (2)0.1820 (2)0.1374 (2)0.0179 (4)
H14A0.52730.13030.06430.021*
C150.5401 (2)0.3257 (2)0.12029 (19)0.0161 (3)
H15A0.55730.36940.03670.019*
C160.5323 (2)0.40335 (18)0.22945 (18)0.0141 (3)
C170.5046 (2)0.33792 (19)0.35510 (19)0.0158 (3)
H17A0.49830.38990.42830.019*
C180.4864 (2)0.1940 (2)0.3702 (2)0.0174 (4)
H18A0.46740.15050.45430.021*
C190.4833 (3)−0.0423 (2)0.2771 (3)0.0260 (4)
H19A0.3967−0.06750.36320.039*
H19B0.5807−0.08090.27440.039*
H19C0.4644−0.07790.20340.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0231 (3)0.0296 (3)0.0285 (3)0.0008 (2)−0.0063 (2)0.0060 (2)
S20.0174 (2)0.0119 (2)0.0122 (2)0.00110 (15)−0.00523 (17)0.00122 (15)
O10.0223 (7)0.0188 (7)0.0167 (7)−0.0017 (5)−0.0007 (6)0.0020 (5)
O20.0224 (7)0.0171 (6)0.0200 (7)0.0047 (5)−0.0105 (6)0.0004 (5)
O30.0284 (7)0.0151 (6)0.0183 (7)0.0020 (5)−0.0129 (6)−0.0014 (5)
N10.0175 (7)0.0161 (7)0.0172 (7)0.0001 (6)−0.0076 (6)−0.0002 (6)
C10.0187 (9)0.0242 (10)0.0180 (9)−0.0016 (7)−0.0028 (7)−0.0009 (7)
C20.0163 (8)0.0210 (9)0.0229 (10)0.0035 (7)−0.0062 (7)−0.0033 (7)
C30.0150 (8)0.0234 (9)0.0190 (9)0.0000 (7)−0.0061 (7)−0.0007 (7)
C40.0182 (9)0.0221 (9)0.0235 (10)0.0023 (7)−0.0112 (8)0.0002 (7)
C50.0252 (9)0.0169 (9)0.0181 (9)−0.0040 (7)−0.0104 (8)0.0005 (7)
C60.0215 (9)0.0222 (10)0.0205 (9)−0.0015 (7)−0.0074 (8)0.0003 (7)
C70.0218 (9)0.0251 (10)0.0218 (10)−0.0018 (8)−0.0077 (8)0.0010 (8)
C80.0275 (10)0.0195 (9)0.0225 (10)−0.0024 (8)−0.0127 (8)0.0015 (7)
C90.0091 (7)0.0229 (9)0.0135 (8)0.0019 (6)−0.0051 (6)−0.0011 (7)
C100.0281 (10)0.0218 (10)0.0280 (11)−0.0013 (8)−0.0162 (9)0.0061 (8)
C110.0295 (11)0.0243 (10)0.0242 (10)−0.0038 (8)−0.0115 (9)0.0076 (8)
C120.0322 (11)0.0195 (9)0.0224 (10)−0.0001 (8)−0.0137 (9)0.0034 (8)
C130.0158 (8)0.0145 (8)0.0243 (9)0.0013 (6)−0.0098 (7)0.0004 (7)
C140.0181 (8)0.0169 (9)0.0187 (9)0.0016 (7)−0.0079 (7)−0.0030 (7)
C150.0167 (8)0.0172 (9)0.0139 (8)0.0014 (6)−0.0061 (7)0.0001 (6)
C160.0147 (8)0.0123 (8)0.0141 (8)0.0012 (6)−0.0051 (6)0.0004 (6)
C170.0172 (8)0.0160 (8)0.0142 (8)0.0013 (6)−0.0069 (7)0.0007 (6)
C180.0172 (8)0.0165 (9)0.0190 (9)0.0000 (6)−0.0086 (7)0.0043 (7)
C190.0313 (11)0.0141 (9)0.0367 (12)−0.0006 (8)−0.0186 (10)0.0020 (8)

Geometric parameters (Å, °)

S1—C111.707 (2)C9—C101.484 (3)
S1—C81.715 (2)C9—H9A0.9300
S2—O21.4569 (15)C10—C111.362 (3)
S2—O31.4574 (14)C10—H10A0.9300
S2—O11.4587 (14)C11—H11A0.9300
S2—C161.7769 (18)C12—H12A0.9600
N1—C31.351 (2)C12—H12B0.9600
N1—C21.352 (3)C12—H12C0.9600
N1—C121.479 (3)C13—C181.394 (3)
C1—C21.367 (3)C13—C141.398 (3)
C1—C51.400 (3)C13—C191.504 (3)
C1—H1A0.9300C14—C151.391 (3)
C2—H2A0.9300C14—H14A0.9300
C3—C41.371 (3)C15—C161.393 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.403 (3)C16—C171.393 (3)
C4—H4A0.9300C17—C181.393 (3)
C5—C61.458 (3)C17—H17A0.9300
C6—C71.346 (3)C18—H18A0.9300
C6—H6A0.9300C19—H19A0.9600
C7—C81.447 (3)C19—H19B0.9600
C7—H7A0.9300C19—H19C0.9600
C8—C91.357 (3)
C11—S1—C892.72 (11)C11—C10—C9112.07 (19)
O2—S2—O3112.96 (8)C11—C10—H10A124.0
O2—S2—O1113.06 (9)C9—C10—H10A124.0
O3—S2—O1113.19 (9)C10—C11—S1111.84 (17)
O2—S2—C16105.46 (9)C10—C11—H11A124.1
O3—S2—C16105.73 (9)S1—C11—H11A124.1
O1—S2—C16105.54 (8)N1—C12—H12A109.5
C3—N1—C2120.63 (17)N1—C12—H12B109.5
C3—N1—C12118.95 (17)H12A—C12—H12B109.5
C2—N1—C12120.41 (17)N1—C12—H12C109.5
C2—C1—C5120.85 (18)H12A—C12—H12C109.5
C2—C1—H1A119.6H12B—C12—H12C109.5
C5—C1—H1A119.6C18—C13—C14118.08 (18)
N1—C2—C1120.52 (18)C18—C13—C19121.03 (18)
N1—C2—H2A119.7C14—C13—C19120.87 (18)
C1—C2—H2A119.7C15—C14—C13121.46 (18)
N1—C3—C4120.49 (18)C15—C14—H14A119.3
N1—C3—H3A119.8C13—C14—H14A119.3
C4—C3—H3A119.8C14—C15—C16119.38 (17)
C3—C4—C5120.62 (18)C14—C15—H15A120.3
C3—C4—H4A119.7C16—C15—H15A120.3
C5—C4—H4A119.7C15—C16—C17120.27 (17)
C1—C5—C4116.87 (18)C15—C16—S2119.07 (14)
C1—C5—C6117.82 (18)C17—C16—S2120.61 (14)
C4—C5—C6125.30 (19)C16—C17—C18119.45 (17)
C7—C6—C5123.75 (19)C16—C17—H17A120.3
C7—C6—H6A118.1C18—C17—H17A120.3
C5—C6—H6A118.1C17—C18—C13121.35 (18)
C6—C7—C8126.6 (2)C17—C18—H18A119.3
C6—C7—H7A116.7C13—C18—H18A119.3
C8—C7—H7A116.7C13—C19—H19A109.5
C9—C8—C7122.8 (2)C13—C19—H19B109.5
C9—C8—S1112.58 (16)H19A—C19—H19B109.5
C7—C8—S1124.57 (17)C13—C19—H19C109.5
C8—C9—C10110.76 (17)H19A—C19—H19C109.5
C8—C9—H9A124.6H19B—C19—H19C109.5
C10—C9—H9A124.6
C3—N1—C2—C1−0.7 (3)C8—C9—C10—C111.8 (3)
C12—N1—C2—C1177.87 (19)C9—C10—C11—S1−0.7 (3)
C5—C1—C2—N1−0.3 (3)C8—S1—C11—C10−0.32 (19)
C2—N1—C3—C41.0 (3)C18—C13—C14—C150.9 (3)
C12—N1—C3—C4−177.58 (19)C19—C13—C14—C15−177.44 (18)
N1—C3—C4—C5−0.3 (3)C13—C14—C15—C160.0 (3)
C2—C1—C5—C40.9 (3)C14—C15—C16—C17−0.8 (3)
C2—C1—C5—C6−179.05 (19)C14—C15—C16—S2−178.34 (14)
C3—C4—C5—C1−0.6 (3)O2—S2—C16—C1569.43 (16)
C3—C4—C5—C6179.3 (2)O3—S2—C16—C15−170.67 (14)
C1—C5—C6—C7−177.1 (2)O1—S2—C16—C15−50.48 (17)
C4—C5—C6—C73.0 (3)O2—S2—C16—C17−108.10 (16)
C5—C6—C7—C8178.9 (2)O3—S2—C16—C1711.80 (18)
C6—C7—C8—C9175.6 (2)O1—S2—C16—C17131.99 (16)
C6—C7—C8—S1−3.7 (3)C15—C16—C17—C180.7 (3)
C11—S1—C8—C91.40 (18)S2—C16—C17—C18178.16 (14)
C11—S1—C8—C7−179.3 (2)C16—C17—C18—C130.3 (3)
C7—C8—C9—C10178.64 (19)C14—C13—C18—C17−1.0 (3)
S1—C8—C9—C10−2.0 (2)C19—C13—C18—C17177.30 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.932.313.219 (3)166
C3—H3A···O1ii0.932.493.168 (2)130
C6—H6A···O20.932.563.378 (3)147
C11—H11A···O1iii0.932.543.303 (3)139
C12—H12A···O1i0.962.523.455 (3)165
C12—H12C···O1ii0.962.473.341 (3)151
C15—H15A···O2iv0.932.423.272 (2)152
C17—H17A···O3i0.932.433.202 (2)141
C4—H4A···Cg1v0.932.623.431 (2)145
C10—H10A···Cg1vi0.932.953.666 (3)135

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z+1; (iii) −x+1, −y+2, −z; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z+1; (vi) x−1, y+1, z.

Footnotes

1This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2338).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, o2020–o2022.
  • Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321–o2323.
  • Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575. [PMC free article] [PubMed]
  • Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth, 265, 260–265.
  • Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Rajesh, N. P., Santhana Raghavan, P., Huang, Y. C., Ichimura, M. & Ramasamy, P. (2002). J. Cryst. Growth, 240, 212–217.
  • Rahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. & Karalai, C. (2003). Acta Cryst. E59, o1798–o1800.
  • Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2008). Acta Cryst. E64, o1453–o1454. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Usman, A., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn. J. Appl. Phys.40, 4213–4216.
  • Usman, A., Okada, S., Oikawa, H. & Nakanishi, H. (2000). Chem. Mater.12, 1162–1170.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography