PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1484.
Published online 2008 October 31. doi:  10.1107/S160053680803496X
PMCID: PMC2959597

(2,9-Dieth­oxy-1,10-phenanthroline-κ2 N,N′)bis­(thio­cyanato-κN)cobalt(II)

Abstract

In the title complex, [Co(NCS)2(C16H16N2O2)], the CoII ion is coordinated by two N atoms from one 2,9-dieth­oxy-1,10-phenanthroline ligand and two N atoms from two different thio­cyanate ligands in a distorted tetra­hedral environment. The Co—N bonds involving the thio­cyanate ligands are significantly shorter than the other two Co—N bonds. The atoms of one of the eth­oxy groups are essentially coplanar with the phenanthroline ring [N=C—O—C = 178.8 (4)°], while the other eth­oxy group is slightly twisted from the phenanthroline ring plane [N=C—O—C = 167.2 (4)°]. In the crystal structure, there is a weak π–π stacking inter­action between two symmetry-related phenanthroline rings with a centroid–centroid distance of 3.706 (4) Å.

Related literature

For 1,10-phenanthroline coordination compounds with transition metal atoms as potential strong luminescent materials, see: Majumdera et al. (2006 [triangle]); Bie et al. (2006 [triangle]); Pijper et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1484-scheme1.jpg

Experimental

Crystal data

  • [Co(NCS)2(C16H16N2O2)]
  • M r = 443.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1484-efi1.jpg
  • a = 8.7072 (16) Å
  • b = 15.625 (3) Å
  • c = 14.828 (3) Å
  • β = 95.082 (3)°
  • V = 2009.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 291 (2) K
  • 0.34 × 0.20 × 0.10 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.707, T max = 0.899
  • 10517 measured reflections
  • 3726 independent reflections
  • 2904 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.239
  • S = 1.07
  • 3726 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 1.80 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803496X/lh2718sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803496X/lh2718Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline can be used as multi-dentate ligands. Their coordination compounds with transition metal atoms possess potential as strong luminescent materials (Majumdera et al., 2006; Bie, et al., 2006) and antimycoplasmal activity (Pijper, et al., 1984).

In the title compound the CoII ion is coordinated by two nitrogen atoms from one phenanthroline ring (N1, N2) and two nitrogen atoms from two different thiocyanate ligands (N3, N4) forming a distorted tetrahedral enviroment (Fig. 1). The Co1—N1 and Co1—N2 bond lengths are longer than the Co1—N3 and Co1—N4 bond lengths. The N1—Co1—N2 bond angle of 81.08 (16) ° involving the two phenanthroline nitrogen atoms is the smallest coordination angle (Table 1). All other N—Co1—N bond angles are larger than the ideal 109.5 °. The atoms of one of the ethoxy groups are essentially co-planar with the phenanthroline ring [N2═C10-O2-C17 = 178.8 (4)°] while the other ethoxy group is slightly twisted from the phenanthroline ring plane [N1═C1-O1-C15 = 167.2 (4)°]. In the crystal structure, weak π–π stacking interactions between pairs of symmetry related phenanthroline rings form a centroid-to-centroid distance of 3.706 (4) Å (Fig. 2).

Experimental

The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, et al., 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol), NH4SCN (0.016 g, 0.2 mmol), and Co(ClO4)2.6H2O (0.037 g, 0.1 mmol) in 30 ml me thanol afforded blue block single crystals in about 10 days (yield about 67%).

Refinement

The H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms; C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The final difference Fourier map had a highest peak at 0.90 Å from atom O1 and a deepest hole at 0.90 Å from atom S2, but were otherwise featureless.

Figures

Fig. 1.
A view of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure showing intermolecular π–π stacking indicated by dashed lines. All H atoms have been omitted for clarity.

Crystal data

[Co(NCS)2(C16H16N2O2)]F(000) = 908
Mr = 443.40Dx = 1.466 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3449 reflections
a = 8.7072 (16) Åθ = 2.6–25.5°
b = 15.625 (3) ŵ = 1.08 mm1
c = 14.828 (3) ÅT = 291 K
β = 95.082 (3)°Block, blue
V = 2009.4 (6) Å30.34 × 0.20 × 0.10 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer3726 independent reflections
Radiation source: fine-focus sealed tube2904 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.707, Tmax = 0.899k = −18→12
10517 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.1606P)2 + 1.5683P] where P = (Fo2 + 2Fc2)/3
3726 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 1.80 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.90632 (7)0.18324 (4)0.31994 (4)0.0446 (3)
S10.6802 (3)0.18997 (12)0.02186 (11)0.0835 (6)
S21.4386 (2)0.18412 (11)0.30008 (16)0.0841 (6)
O10.8363 (4)0.3691 (2)0.3802 (2)0.0599 (9)
O20.9610 (5)−0.0115 (2)0.2896 (3)0.0668 (10)
N10.8007 (4)0.2359 (3)0.4237 (2)0.0474 (9)
N20.8523 (5)0.0737 (3)0.3847 (3)0.0508 (10)
N30.8028 (5)0.1958 (3)0.2003 (3)0.0577 (11)
N41.1253 (5)0.1983 (3)0.3143 (3)0.0571 (11)
C10.7782 (5)0.3180 (3)0.4418 (3)0.0461 (11)
C20.7004 (7)0.3438 (4)0.5164 (4)0.0658 (15)
H20.68610.40170.52750.079*
C30.6473 (7)0.2855 (5)0.5710 (4)0.0685 (16)
H30.59630.30320.62030.082*
C40.6667 (6)0.1969 (4)0.5557 (4)0.0601 (14)
C50.6155 (7)0.1293 (5)0.6092 (4)0.0719 (17)
H50.56110.14240.65860.086*
C60.6434 (7)0.0464 (5)0.5905 (4)0.0741 (18)
H60.60900.00360.62740.089*
C70.7254 (6)0.0239 (4)0.5145 (4)0.0593 (13)
C80.7608 (7)−0.0601 (4)0.4899 (4)0.0698 (16)
H80.7302−0.10550.52470.084*
C90.8390 (7)−0.0767 (4)0.4160 (4)0.0680 (15)
H90.8624−0.13260.40040.082*
C100.8837 (6)−0.0064 (3)0.3637 (4)0.0556 (12)
C110.7747 (5)0.0888 (3)0.4597 (3)0.0508 (12)
C120.7455 (5)0.1759 (3)0.4801 (3)0.0455 (11)
C130.7502 (6)0.1927 (3)0.1260 (4)0.0503 (12)
C141.2557 (6)0.1921 (3)0.3084 (3)0.0512 (12)
C150.8523 (7)0.4599 (4)0.3978 (4)0.0715 (16)
H15A0.90040.46970.45850.086*
H15B0.75220.48750.39220.086*
C160.9501 (8)0.4942 (4)0.3297 (5)0.090 (2)
H16A1.05000.46780.33750.135*
H16B0.96080.55500.33740.135*
H16C0.90320.48210.27010.135*
C171.0080 (7)−0.0937 (4)0.2575 (5)0.0732 (16)
H17A0.9188−0.12870.23880.088*
H17B1.0713−0.12370.30450.088*
C181.0986 (8)−0.0743 (5)0.1784 (5)0.092 (2)
H18A1.0366−0.04090.13480.139*
H18B1.1274−0.12690.15100.139*
H18C1.1897−0.04280.19890.139*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0453 (4)0.0551 (5)0.0342 (4)−0.0015 (3)0.0081 (3)0.0025 (3)
S10.1125 (15)0.0887 (12)0.0451 (9)−0.0064 (9)−0.0165 (9)0.0053 (7)
S20.0513 (9)0.0844 (12)0.1190 (16)0.0024 (7)0.0205 (9)0.0091 (10)
O10.071 (2)0.058 (2)0.052 (2)0.0013 (17)0.0125 (17)−0.0004 (17)
O20.080 (3)0.053 (2)0.069 (2)0.0074 (18)0.017 (2)−0.0040 (18)
N10.0404 (19)0.068 (3)0.0341 (19)−0.0015 (17)0.0057 (15)0.0015 (18)
N20.049 (2)0.059 (2)0.044 (2)−0.0027 (18)0.0031 (16)0.0038 (19)
N30.052 (2)0.079 (3)0.042 (2)−0.003 (2)0.0059 (19)0.004 (2)
N40.047 (2)0.079 (3)0.047 (2)−0.005 (2)0.0087 (18)−0.001 (2)
C10.042 (2)0.051 (3)0.045 (3)0.0039 (18)0.0017 (19)−0.005 (2)
C20.062 (3)0.082 (4)0.054 (3)0.011 (3)0.011 (3)−0.017 (3)
C30.058 (3)0.108 (5)0.042 (3)0.008 (3)0.017 (2)−0.014 (3)
C40.044 (3)0.096 (4)0.039 (3)0.000 (2)−0.001 (2)−0.001 (3)
C50.060 (3)0.119 (6)0.039 (3)−0.013 (3)0.016 (2)0.008 (3)
C60.067 (4)0.110 (5)0.047 (3)−0.022 (3)0.013 (3)0.020 (3)
C70.053 (3)0.076 (4)0.048 (3)−0.016 (3)−0.001 (2)0.013 (3)
C80.068 (4)0.076 (4)0.063 (4)−0.016 (3)−0.007 (3)0.026 (3)
C90.070 (4)0.059 (3)0.072 (4)−0.008 (3)−0.007 (3)0.012 (3)
C100.053 (3)0.056 (3)0.055 (3)0.001 (2)−0.006 (2)0.002 (2)
C110.044 (2)0.070 (3)0.037 (2)−0.007 (2)−0.0017 (18)0.008 (2)
C120.037 (2)0.064 (3)0.035 (2)−0.0055 (19)0.0021 (18)0.008 (2)
C130.055 (3)0.052 (3)0.044 (3)0.001 (2)0.007 (2)0.005 (2)
C140.060 (3)0.051 (3)0.043 (3)−0.005 (2)0.007 (2)−0.001 (2)
C150.072 (4)0.064 (4)0.079 (4)0.000 (3)0.008 (3)−0.009 (3)
C160.090 (5)0.065 (4)0.120 (6)−0.007 (4)0.033 (4)0.009 (4)
C170.069 (4)0.062 (3)0.088 (4)0.007 (3)−0.001 (3)−0.016 (3)
C180.090 (5)0.084 (5)0.106 (6)0.006 (4)0.026 (4)−0.022 (4)

Geometric parameters (Å, °)

Co1—N31.928 (4)C5—C61.352 (9)
Co1—N41.930 (5)C5—H50.9300
Co1—N12.035 (4)C6—C71.431 (8)
Co1—N22.038 (4)C6—H60.9300
S1—C131.609 (5)C7—C111.391 (7)
S2—C141.613 (6)C7—C81.403 (9)
O1—C11.345 (6)C8—C91.365 (9)
O1—C151.447 (7)C8—H80.9300
O2—C101.341 (7)C9—C101.419 (8)
O2—C171.441 (7)C9—H90.9300
N1—C11.329 (6)C11—C121.422 (7)
N1—C121.371 (6)C15—C161.478 (8)
N2—C101.324 (7)C15—H15A0.9700
N2—C111.372 (6)C15—H15B0.9700
N3—C131.156 (7)C16—H16A0.9600
N4—C141.151 (7)C16—H16B0.9600
C1—C21.406 (7)C16—H16C0.9600
C2—C31.330 (9)C17—C181.501 (9)
C2—H20.9300C17—H17A0.9700
C3—C41.415 (9)C17—H17B0.9700
C3—H30.9300C18—H18A0.9600
C4—C121.404 (7)C18—H18B0.9600
C4—C51.417 (9)C18—H18C0.9600
N3—Co1—N4109.33 (18)C7—C8—H8119.2
N3—Co1—N1116.67 (17)C8—C9—C10118.2 (6)
N4—Co1—N1119.86 (17)C8—C9—H9120.9
N3—Co1—N2114.22 (17)C10—C9—H9120.9
N4—Co1—N2113.12 (18)N2—C10—O2112.2 (4)
N1—Co1—N281.08 (16)N2—C10—C9122.1 (5)
C1—O1—C15119.7 (4)O2—C10—C9125.7 (5)
C10—O2—C17120.1 (4)N2—C11—C7123.2 (5)
C1—N1—C12118.1 (4)N2—C11—C12116.5 (4)
C1—N1—Co1128.9 (3)C7—C11—C12120.3 (5)
C12—N1—Co1113.0 (3)N1—C12—C4123.3 (5)
C10—N2—C11118.7 (4)N1—C12—C11116.5 (4)
C10—N2—Co1128.5 (3)C4—C12—C11120.1 (4)
C11—N2—Co1112.8 (3)N3—C13—S1178.6 (5)
C13—N3—Co1170.6 (4)N4—C14—S2179.6 (5)
C14—N4—Co1168.0 (4)O1—C15—C16106.5 (5)
N1—C1—O1111.4 (4)O1—C15—H15A110.4
N1—C1—C2121.7 (5)C16—C15—H15A110.4
O1—C1—C2126.9 (5)O1—C15—H15B110.4
C3—C2—C1120.0 (6)C16—C15—H15B110.4
C3—C2—H2120.0H15A—C15—H15B108.6
C1—C2—H2120.0C15—C16—H16A109.5
C2—C3—C4121.3 (5)C15—C16—H16B109.5
C2—C3—H3119.3H16A—C16—H16B109.5
C4—C3—H3119.3C15—C16—H16C109.5
C12—C4—C3115.5 (5)H16A—C16—H16C109.5
C12—C4—C5118.3 (6)H16B—C16—H16C109.5
C3—C4—C5126.2 (6)O2—C17—C18105.2 (5)
C6—C5—C4121.9 (5)O2—C17—H17A110.7
C6—C5—H5119.1C18—C17—H17A110.7
C4—C5—H5119.1O2—C17—H17B110.7
C5—C6—C7120.6 (5)C18—C17—H17B110.7
C5—C6—H6119.7H17A—C17—H17B108.8
C7—C6—H6119.7C17—C18—H18A109.5
C11—C7—C8116.4 (5)C17—C18—H18B109.5
C11—C7—C6118.8 (6)H18A—C18—H18B109.5
C8—C7—C6124.8 (5)C17—C18—H18C109.5
C9—C8—C7121.5 (5)H18A—C18—H18C109.5
C9—C8—H8119.2H18B—C18—H18C109.5
N3—Co1—N1—C1−68.1 (4)C6—C7—C8—C9179.7 (5)
N4—Co1—N1—C167.6 (4)C7—C8—C9—C10−0.3 (8)
N2—Co1—N1—C1179.2 (4)C11—N2—C10—O2−179.4 (4)
N3—Co1—N1—C12111.0 (3)Co1—N2—C10—O2−0.1 (6)
N4—Co1—N1—C12−113.3 (3)C11—N2—C10—C90.3 (7)
N2—Co1—N1—C12−1.7 (3)Co1—N2—C10—C9179.6 (4)
N3—Co1—N2—C1066.4 (4)C17—O2—C10—N2178.8 (4)
N4—Co1—N2—C10−59.6 (5)C17—O2—C10—C9−0.9 (8)
N1—Co1—N2—C10−178.3 (4)C8—C9—C10—N20.3 (8)
N3—Co1—N2—C11−114.3 (3)C8—C9—C10—O2179.9 (5)
N4—Co1—N2—C11119.8 (3)C10—N2—C11—C7−0.8 (7)
N1—Co1—N2—C111.0 (3)Co1—N2—C11—C7179.8 (4)
N3—Co1—N4—C14−90 (2)C10—N2—C11—C12179.2 (4)
N1—Co1—N4—C14132 (2)Co1—N2—C11—C12−0.2 (5)
N2—Co1—N4—C1439 (2)C8—C7—C11—N20.7 (7)
C12—N1—C1—O1−179.1 (4)C6—C7—C11—N2−179.1 (4)
Co1—N1—C1—O10.0 (6)C8—C7—C11—C12−179.3 (5)
C12—N1—C1—C20.0 (7)C6—C7—C11—C120.8 (7)
Co1—N1—C1—C2179.1 (4)C1—N1—C12—C40.0 (7)
C15—O1—C1—N1−167.2 (4)Co1—N1—C12—C4−179.2 (4)
C15—O1—C1—C213.7 (8)C1—N1—C12—C11−178.7 (4)
N1—C1—C2—C30.1 (8)Co1—N1—C12—C112.1 (5)
O1—C1—C2—C3179.0 (5)C3—C4—C12—N1−0.2 (7)
C1—C2—C3—C4−0.3 (9)C5—C4—C12—N1−179.8 (5)
C2—C3—C4—C120.3 (8)C3—C4—C12—C11178.4 (5)
C2—C3—C4—C5179.9 (5)C5—C4—C12—C11−1.1 (7)
C12—C4—C5—C61.4 (8)N2—C11—C12—N1−1.3 (6)
C3—C4—C5—C6−178.1 (6)C7—C11—C12—N1178.8 (4)
C4—C5—C6—C7−0.6 (9)N2—C11—C12—C4180.0 (4)
C5—C6—C7—C11−0.6 (8)C7—C11—C12—C40.0 (7)
C5—C6—C7—C8179.6 (6)C1—O1—C15—C16167.3 (5)
C11—C7—C8—C9−0.1 (8)C10—O2—C17—C18−176.5 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2718).

References

  • Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett.60, 2475–2479.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Majumdera, A. Westerhausen, M., Kneifel, A. N., Sutter, J. P., Daroc, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846.
  • Pijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem.19, 399–404.
  • Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SAINT Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography