PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1466.
Published online 2008 October 31. doi:  10.1107/S1600536808034533
PMCID: PMC2959594

Bis[2-hydr­oxy-N′-(2-hydroxy­benzo­yl)benzohydrazitato]dipyridine­cadmium(II)

Abstract

The title complex, [Cd(C14H11N2O4)2(C5H5N)2], exhibits crystallographic twofold symmetry. The CdII atom is located on the twofold rotation axis and reveals a slightly distorted octa­hedral coordination defined by four atoms (N2O2) from two symmetry-related chelate ligands and two pyridine N atoms. Intra­molecular O—H(...)O and N—H(...)O hydrogen bonds stabilize the mol­ecular conformation while inter­molecular O—H(...)O hydrogen bonding links mol­ecules into a triad, generating a helix along the threefold screw axis.

Related literature

Three manganese metallacrowns with unsymmetrical aroylhydrazine ligands were synthesized and reported by Dou et al. (2006 [triangle]) and John et al. (2006 [triangle]). For the crystal structure of an iron compound with N,N′-bis-picolinoyl hydrazine, see: Bernhardt et al. (2005 [triangle]). For a nickel complex formed by N,N′-disalicyloylhydrazine, see: Chen et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1466-scheme1.jpg

Experimental

Crystal data

  • [Cd(C14H11N2O4)2(C5H5N)2]
  • M r = 813.10
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-m1466-efi1.jpg
  • a = 13.0380 (10) Å
  • c = 18.069 (3) Å
  • V = 2660.0 (5) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 298 (2) K
  • 0.40 × 0.38 × 0.35 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.773, T max = 0.797
  • 13955 measured reflections
  • 3146 independent reflections
  • 2750 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.071
  • S = 1.00
  • 3146 reflections
  • 241 parameters
  • H-atom parameters constrained
  • Δρmax = 0.90 e Å−3
  • Δρmin = −0.32 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1353 Friedel pairs
  • Flack parameter: −0.06 (3)

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034533/kp2188sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034533/kp2188Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of China (grant No. 20671048).

supplementary crystallographic information

Comment

Metal complexes with aroylhydrazine ligands are of increasing attention due to their interesting chemical activities (John et al. 2006; Dou et al., 2006). However, the research on the compounds with symmetrical diaroylhydrazine ligands was limited (Bernhardt et al., 2005; Chen et al., 2007). As an extension of our work on the structural characterization of these compounds, the title complex, (I), is synthesized and characterized by X-ray structure analysis. The complex (I) exhibits a twofold rotation symmetry. It comprises of one CdII atom at special position at the twofold rotation axes coordinated by two ligands and two pyridines (Fig. 1 and Table 1). Each ligand acts as the bidentate via the iminoacyl groups forming two five-membered rings around metal ion with the dihedral angle of 59.71 (4)°.

Intramolecular O4—H4···O3 and N2—H2···O2 hydrogen bonds stabilizes the molecular conformation. There is also an intermolecular hydrogen bond O—H···O hydrogen bond [ 2.639 (3) Å] (Table 2) assembling three molecules into a triad, that is a basic structural element of a helix along [0 0 1] direction (Fig. 2).

Experimental

The solution of Cd(NO3)24H2O (0.123 g, 0.4 mmol) in methanol (10 mL) was added to the mixture of 1,2-disalicyloylhydrazine (0.054 g, 0.2 mmol) and sodium hydroxide (0.032 g, 0.8 mmol) in pyridine (10 mL). A colourless solution was generated after stirring for two hours at room temperature. The solution was allowed to stand for 2 weeks, whereupon white block crystals were obtained. Yield: 0.058 g, 77%. m. p.> 573 K. Anal. for C38H32CdN6O8: Calc. C, 56.08; H, 3.93; N, 10.33; Found: C, 56.54; H, 3.71; N, 10.54%. The No. of CCDC: 686345.

Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C(sp2 hybrid)-H distances of 0.93Å (Uiso(H)=1.2Ueq(C)).

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Supramolecular structure of the title complex in the direction [001].

Crystal data

[Cd(C14H11N2O4)2(C5H5N)2]Dx = 1.523 Mg m3
Mr = 813.10Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 5141 reflections
a = 13.038 (1) Åθ = 2.9–22.9°
c = 18.069 (3) ŵ = 0.68 mm1
V = 2660.0 (5) Å3T = 298 K
Z = 3Block, colourless
F(000) = 12420.40 × 0.38 × 0.35 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3146 independent reflections
Radiation source: fine-focus sealed tube2750 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.773, Tmax = 0.797k = −15→15
13955 measured reflectionsl = −21→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071w = 1/[σ2(Fo2) + (0.041P)2 + 0.5675P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3146 reflectionsΔρmax = 0.90 e Å3
241 parametersΔρmin = −0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 1353 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.06 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd11.00000.45722 (2)0.66670.04088 (11)
N10.8620 (2)0.2612 (2)0.69499 (15)0.0387 (7)
N20.8356 (3)0.2467 (3)0.77051 (14)0.0406 (6)
H20.80050.17710.78970.049*
N30.8726 (2)0.5186 (3)0.61934 (16)0.0449 (7)
O10.9119 (2)0.4418 (2)0.78506 (13)0.0517 (7)
O20.7567 (3)0.1137 (2)0.88928 (14)0.0584 (7)
H2A0.72900.05610.91700.088*
O30.8013 (3)0.06392 (19)0.69676 (12)0.0558 (6)
O40.9060 (3)0.0079 (3)0.59233 (16)0.0797 (10)
H40.87600.00220.63310.120*
C10.8648 (3)0.3405 (3)0.81227 (18)0.0391 (8)
C20.8409 (3)0.3228 (3)0.89327 (19)0.0403 (8)
C30.7918 (3)0.2136 (4)0.9296 (2)0.0454 (9)
C40.7786 (4)0.2086 (4)1.0058 (2)0.0548 (10)
H4A0.74670.13601.02980.066*
C50.8122 (4)0.3102 (4)1.0464 (2)0.0614 (11)
H50.80120.30531.09740.074*
C60.8618 (4)0.4184 (4)1.0120 (2)0.0556 (10)
H60.88580.48721.03930.067*
C70.8753 (3)0.4233 (3)0.9357 (2)0.0477 (9)
H70.90850.49650.91230.057*
C80.8396 (3)0.1621 (3)0.66318 (18)0.0402 (8)
C90.8647 (3)0.1680 (3)0.58281 (18)0.0415 (8)
C100.9002 (4)0.0938 (4)0.5519 (2)0.0547 (10)
C110.9321 (4)0.1039 (4)0.4769 (2)0.0687 (13)
H110.95920.05620.45680.082*
C120.9225 (4)0.1852 (4)0.4338 (2)0.0673 (12)
H120.94350.19260.38410.081*
C130.8832 (4)0.2547 (4)0.4624 (2)0.0629 (12)
H130.87540.30800.43200.075*
C140.8542 (3)0.2472 (4)0.5364 (2)0.0516 (9)
H140.82740.29580.55550.062*
C150.9145 (4)0.6185 (4)0.5806 (2)0.0550 (10)
H150.99420.65870.56750.066*
C160.8437 (4)0.6645 (4)0.5591 (2)0.0636 (12)
H160.87600.73580.53340.076*
C170.7270 (4)0.6045 (4)0.5759 (2)0.0627 (12)
H170.67770.63350.56160.075*
C180.6827 (3)0.5002 (4)0.6144 (2)0.0591 (11)
H180.60260.45700.62630.071*
C190.7572 (3)0.4610 (3)0.6349 (2)0.0535 (9)
H190.72620.39030.66120.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0445 (2)0.03796 (14)0.04239 (18)0.02224 (11)0.00869 (17)0.00434 (9)
N10.0392 (17)0.0368 (16)0.0340 (15)0.0144 (14)0.0019 (12)0.0033 (12)
N20.0437 (16)0.0396 (16)0.0347 (15)0.0179 (13)0.0072 (13)0.0058 (14)
N30.0448 (18)0.0430 (17)0.0494 (17)0.0236 (15)0.0064 (13)0.0045 (14)
O10.0692 (18)0.0398 (14)0.0459 (15)0.0271 (13)0.0147 (13)0.0067 (12)
O20.080 (2)0.0438 (15)0.0434 (15)0.0254 (14)0.0077 (13)0.0107 (13)
O30.0734 (19)0.0376 (13)0.0493 (14)0.0223 (15)0.0222 (15)0.0080 (11)
O40.118 (3)0.081 (2)0.066 (2)0.070 (2)0.0278 (19)0.0082 (17)
C10.0388 (19)0.041 (2)0.041 (2)0.0226 (17)0.0035 (16)0.0036 (17)
C20.042 (2)0.049 (2)0.0364 (18)0.0282 (17)0.0029 (15)0.0027 (16)
C30.044 (2)0.056 (2)0.042 (2)0.0290 (18)0.0009 (16)0.0031 (18)
C40.065 (3)0.066 (3)0.042 (2)0.040 (2)0.0030 (19)0.012 (2)
C50.074 (3)0.092 (4)0.037 (2)0.055 (3)0.005 (2)0.006 (2)
C60.064 (3)0.073 (3)0.048 (2)0.048 (2)−0.0070 (19)−0.011 (2)
C70.055 (2)0.049 (2)0.049 (2)0.0344 (19)0.0047 (17)0.0020 (17)
C80.0341 (18)0.0382 (17)0.0420 (17)0.0133 (15)0.0033 (15)0.0030 (14)
C90.038 (2)0.0391 (17)0.0363 (16)0.0113 (17)0.0027 (16)−0.0017 (13)
C100.063 (3)0.049 (2)0.047 (2)0.025 (2)0.005 (2)−0.0025 (18)
C110.077 (3)0.076 (3)0.046 (2)0.033 (3)0.011 (2)−0.011 (2)
C120.065 (3)0.073 (3)0.039 (2)0.016 (2)0.004 (2)−0.006 (2)
C130.065 (3)0.061 (2)0.040 (2)0.014 (2)−0.010 (2)0.0026 (18)
C140.047 (2)0.044 (2)0.050 (2)0.0129 (17)−0.0035 (18)−0.0011 (19)
C150.050 (2)0.056 (2)0.060 (3)0.027 (2)0.0090 (18)0.012 (2)
C160.069 (3)0.067 (3)0.062 (2)0.040 (2)0.007 (2)0.025 (2)
C170.065 (3)0.088 (3)0.053 (2)0.051 (3)−0.006 (2)0.002 (2)
C180.041 (2)0.074 (3)0.062 (3)0.028 (2)−0.0012 (19)−0.007 (2)
C190.048 (2)0.044 (2)0.063 (2)0.0198 (19)0.0099 (19)0.0037 (19)

Geometric parameters (Å, °)

Cd1—N12.331 (3)C5—H50.9300
Cd1—N1i2.331 (3)C6—C71.387 (5)
Cd1—N3i2.337 (3)C6—H60.9300
Cd1—N32.337 (3)C7—H70.9300
Cd1—O12.389 (2)C8—C91.482 (4)
Cd1—O1i2.389 (2)C9—C101.382 (5)
N1—C81.307 (4)C9—C141.389 (5)
N1—N21.397 (4)C10—C111.404 (5)
N2—C11.320 (4)C11—C121.371 (6)
N2—H20.8600C11—H110.9300
N3—C151.332 (5)C12—C131.346 (6)
N3—C191.333 (5)C12—H120.9300
O1—C11.245 (4)C13—C141.380 (5)
O2—C31.357 (4)C13—H130.9300
O2—H2A0.8200C14—H140.9300
O3—C81.271 (4)C15—C161.385 (6)
O4—C101.371 (5)C15—H150.9300
O4—H40.8200C16—C171.352 (6)
C1—C21.490 (5)C16—H160.9300
C2—C71.385 (5)C17—C181.372 (6)
C2—C31.399 (5)C17—H170.9300
C3—C41.384 (5)C18—C191.356 (6)
C4—C51.380 (6)C18—H180.9300
C4—H4A0.9300C19—H190.9300
C5—C61.372 (6)
N1—Cd1—N1i89.45 (14)C5—C6—C7118.8 (4)
N1—Cd1—N3i145.80 (9)C5—C6—H6120.6
N1i—Cd1—N3i99.48 (10)C7—C6—H6120.6
N1—Cd1—N399.48 (10)C2—C7—C6122.2 (4)
N1i—Cd1—N3145.80 (9)C2—C7—H7118.9
N3i—Cd1—N391.48 (14)C6—C7—H7118.9
N1—Cd1—O168.64 (9)O3—C8—N1124.5 (3)
N1i—Cd1—O1125.88 (9)O3—C8—C9119.0 (3)
N3i—Cd1—O179.62 (9)N1—C8—C9116.4 (3)
N3—Cd1—O187.84 (9)C10—C9—C14117.9 (3)
N1—Cd1—O1i125.88 (9)C10—C9—C8120.1 (3)
N1i—Cd1—O1i68.64 (9)C14—C9—C8121.9 (3)
N3i—Cd1—O1i87.84 (9)O4—C10—C9122.1 (3)
N3—Cd1—O1i79.62 (9)O4—C10—C11117.1 (4)
O1—Cd1—O1i162.04 (12)C9—C10—C11120.7 (4)
C8—N1—N2112.2 (3)C12—C11—C10118.9 (4)
C8—N1—Cd1131.0 (2)C12—C11—H11120.5
N2—N1—Cd1111.44 (19)C10—C11—H11120.5
C1—N2—N1119.7 (3)C13—C12—C11121.0 (4)
C1—N2—H2120.1C13—C12—H12119.5
N1—N2—H2120.1C11—C12—H12119.5
C15—N3—C19117.2 (3)C12—C13—C14120.4 (4)
C15—N3—Cd1120.9 (2)C12—C13—H13119.8
C19—N3—Cd1121.7 (2)C14—C13—H13119.8
C1—O1—Cd1113.9 (2)C13—C14—C9120.9 (4)
C3—O2—H2A109.5C13—C14—H14119.6
C10—O4—H4109.5C9—C14—H14119.6
O1—C1—N2121.1 (3)N3—C15—C16122.3 (4)
O1—C1—C2120.4 (3)N3—C15—H15118.8
N2—C1—C2118.5 (3)C16—C15—H15118.8
C7—C2—C3118.0 (3)C17—C16—C15119.2 (4)
C7—C2—C1117.0 (3)C17—C16—H16120.4
C3—C2—C1124.9 (3)C15—C16—H16120.4
O2—C3—C4121.0 (4)C16—C17—C18118.8 (4)
O2—C3—C2119.2 (3)C16—C17—H17120.6
C4—C3—C2119.8 (4)C18—C17—H17120.6
C5—C4—C3120.8 (4)C19—C18—C17119.1 (4)
C5—C4—H4A119.6C19—C18—H18120.5
C3—C4—H4A119.6C17—C18—H18120.5
C6—C5—C4120.4 (4)N3—C19—C18123.3 (4)
C6—C5—H5119.8N3—C19—H19118.3
C4—C5—H5119.8C18—C19—H19118.3
N1i—Cd1—N1—C8−39.3 (3)C7—C2—C3—C40.2 (5)
N3i—Cd1—N1—C8−145.5 (3)C1—C2—C3—C4177.0 (4)
N3—Cd1—N1—C8107.5 (3)O2—C3—C4—C5−178.7 (4)
O1—Cd1—N1—C8−168.6 (3)C2—C3—C4—C50.7 (6)
O1i—Cd1—N1—C823.6 (3)C3—C4—C5—C6−1.4 (6)
N1i—Cd1—N1—N2112.3 (2)C4—C5—C6—C71.2 (6)
N3i—Cd1—N1—N26.1 (3)C3—C2—C7—C6−0.4 (5)
N3—Cd1—N1—N2−100.9 (2)C1—C2—C7—C6−177.5 (3)
O1—Cd1—N1—N2−17.02 (19)C5—C6—C7—C2−0.3 (6)
O1i—Cd1—N1—N2175.09 (18)N2—N1—C8—O3−1.8 (5)
C8—N1—N2—C1172.8 (3)Cd1—N1—C8—O3149.6 (3)
Cd1—N1—N2—C115.7 (3)N2—N1—C8—C9180.0 (3)
N1—Cd1—N3—C15−164.9 (3)Cd1—N1—C8—C9−28.6 (4)
N1i—Cd1—N3—C15−61.7 (4)O3—C8—C9—C10−30.0 (5)
N3i—Cd1—N3—C1547.6 (3)N1—C8—C9—C10148.3 (3)
O1—Cd1—N3—C15127.1 (3)O3—C8—C9—C14150.3 (4)
O1i—Cd1—N3—C15−39.9 (3)N1—C8—C9—C14−31.4 (5)
N1—Cd1—N3—C1920.6 (3)C14—C9—C10—O4−175.9 (4)
N1i—Cd1—N3—C19123.8 (3)C8—C9—C10—O44.4 (6)
N3i—Cd1—N3—C19−126.9 (3)C14—C9—C10—C114.1 (6)
O1—Cd1—N3—C19−47.3 (3)C8—C9—C10—C11−175.6 (4)
O1i—Cd1—N3—C19145.6 (3)O4—C10—C11—C12177.2 (4)
N1—Cd1—O1—C119.5 (2)C9—C10—C11—C12−2.9 (7)
N1i—Cd1—O1—C1−53.3 (3)C10—C11—C12—C13−0.1 (7)
N3i—Cd1—O1—C1−147.5 (3)C11—C12—C13—C141.6 (7)
N3—Cd1—O1—C1120.5 (2)C12—C13—C14—C9−0.2 (6)
O1i—Cd1—O1—C1166.0 (2)C10—C9—C14—C13−2.6 (5)
Cd1—O1—C1—N2−19.3 (4)C8—C9—C14—C13177.1 (3)
Cd1—O1—C1—C2160.3 (2)C19—N3—C15—C162.3 (6)
N1—N2—C1—O12.6 (5)Cd1—N3—C15—C16−172.4 (3)
N1—N2—C1—C2−177.0 (3)N3—C15—C16—C17−2.1 (6)
O1—C1—C2—C7−1.1 (5)C15—C16—C17—C180.6 (6)
N2—C1—C2—C7178.5 (3)C16—C17—C18—C190.5 (6)
O1—C1—C2—C3−178.0 (3)C15—N3—C19—C18−1.2 (6)
N2—C1—C2—C31.6 (5)Cd1—N3—C19—C18173.5 (3)
C7—C2—C3—O2179.6 (3)C17—C18—C19—N3−0.2 (7)
C1—C2—C3—O2−3.5 (5)

Symmetry codes: (i) −x+2, −x+y+1, −z+4/3.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.922.638 (4)145
N2—H2···O20.861.942.624 (4)135
O2—H2A···O3ii0.821.882.639 (3)153

Symmetry codes: (ii) xy, −y, −z+5/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2188).

References

  • Bernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. C. & Richardson, D. R. (2005). Biol. Inorg. Chem.10, 761–777. [PubMed]
  • Chen, Y.-T., Dou, J.-M., Li, D.-C., Wang, D.-Q. & Zhu, Y.-H. (2007). Acta Cryst. E63, m2503–m2504.
  • Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem.23, 4866–4871.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • John, R. P., Park, J., Moon, D., Lee, K. & Lah, M. S. (2006). Chem. Commun. pp. 3699–3701. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography