PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2069.
Published online 2008 October 4. doi:  10.1107/S1600536808030973
PMCID: PMC2959592

13c-(2-Chloro­ethoxy)-1,13c-dihydro-2,3-epoxy­dibenzo[a,kl]xanthan-1-one

Abstract

The title compound, C22H15ClO4, containing three chiral C atoms, is an inter­mediate in the design of chiral alcohols. In the crystal structure, a chain structure is generated through C—H(...)O contacts and an intramolecular C—H(...)O interaction also occurs. The dihedral angle between the benzene ring and the naphthalene system is 16.5°.

Related literature

For related literature, see: Aronne et al. (2008 [triangle]); Sasidharan et al. (2002 [triangle]); Tan et al. (2001 [triangle]); Wang et al. (2003 [triangle]); Yamazaki (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2069-scheme1.jpg

Experimental

Crystal data

  • C22H15ClO4
  • M r = 378.79
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2069-efi1.jpg
  • a = 7.7966 (13) Å
  • b = 10.4468 (18) Å
  • c = 21.349 (4) Å
  • V = 1738.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 193 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.930, T max = 0.966
  • 10185 measured reflections
  • 3416 independent reflections
  • 2809 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.136
  • S = 1.06
  • 3416 reflections
  • 244 parameters
  • 19 restraints
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.35 e Å−3
  • Absolute structure: Flack (1983 [triangle]) , 1440 Friedel pairs
  • Flack parameter: 0.00 (11)

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030973/tk2302sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030973/tk2302Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Medical Scientific Research Foundation of Guangdong Province, China (grant No. B2006091) and the NSF of Guangdong Province, China (grant No. 7300449).

supplementary crystallographic information

Comment

Epoxides are well known as one of the most valuable building blocks used as intermediates and precursors for pharmaceuticals (Yamazaki, 2008; Aronne, et al., 2008). The title compound, (I), is a key intermediate in the preparation of chiral alcohols, which we are designing for potential use as antiviral agents. The structure of (I), Fig. 1, provides information on the potential stereoselectivity of its ring-opening reactions (Sasidharan et al., 2002; Wang et al., 2003). The molecule of (I) contains six fused rings with the three aromatic rings almost coplanar. The six-membered carbocyclic ring adopts a slightly twisted boat conformation and the pyran ring is nearly planar. The epoxy group points in the same direction as the OCH2CH2Cl group, having a syn relationship. In the crystal structure, molecules of (I) associate in a head-to-tail manner, parallel to the b axis, via O-H···O hydrogen bonds to form a 1D structure, Fig. 2 and Table 1.

Experimental

Compound (I) was obtained by epoxidation of 13c-(2-chloroethyloxy)-1-oxo-1,13c-dihydrodibenzo[a,kl]xanthene in methanol with aqueous hydrogen peroxide (30%) under mild reaction conditions (Tan et al., 2001). Compound (I) was the main product, isolated in a yield of 92%. Crystals suitable for X-ray analysis were obtained from the slow evaporation of an acetone solution (m.p. 527–529 K). IR (KBr disk): 3409, 2905, 2359, 1720 (s, C=O), 1454, 1267, 1097, 776, 755, 508 cm-1. 1H NMR (300 MHz in CDCl3/TMS): 3.15–3.25 (m, 2H), 3.27–3.38 (m, 2H), 4.04 (d, J = 3.9 Hz, 1H), 4.34 (d, J = 3.9 Hz, 1H), 7.24–7.26 (m, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.34–7.49 (m, 4H), 7.78–7.79 (m, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.96–8.02 (m, 1H) p.p.m. FAB-MS (m/z): 299(M+ –OCH2CH2Cl).

Refinement

The hydrogen atoms were placed in geometrically idealized positions with C—H = 0.95 - 1.00 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of (I) showing atom labelling and 30% probability ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radii.
Fig. 2.
One-dimensional chain aligned along the b axis in (I) consolidated by C-H···O contacts, shown as dashed lines.

Crystal data

C22H15ClO4F(000) = 784
Mr = 378.79Dx = 1.447 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3462 reflections
a = 7.7966 (13) Åθ = 3.0–26.0°
b = 10.4468 (18) ŵ = 0.25 mm1
c = 21.349 (4) ÅT = 193 K
V = 1738.9 (5) Å3Block, white
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Rigaku Mercury diffractometer3416 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan Jacobson (1998)h = −9→9
Tmin = 0.930, Tmax = 0.966k = −12→12
10185 measured reflectionsl = −19→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.136w = 1/[σ2(Fo2) + (0.074P)2 + 0.4256P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3416 reflectionsΔρmax = 0.59 e Å3
244 parametersΔρmin = −0.35 e Å3
19 restraintsAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.46182 (15)0.38912 (11)0.01032 (4)0.0875 (3)
O1−0.1176 (2)0.3230 (2)−0.16123 (9)0.0532 (5)
O20.2117 (3)0.0809 (2)−0.15674 (11)0.0644 (6)
O30.3149 (3)0.5535 (3)−0.24976 (11)0.0751 (7)
O40.2976 (2)0.31516 (16)−0.11496 (8)0.0407 (4)
C10.0243 (3)0.2781 (2)−0.16079 (11)0.0405 (5)
C20.0484 (4)0.1375 (3)−0.16874 (14)0.0539 (7)
H2A−0.05480.0821−0.16260.065*
C30.1656 (4)0.1034 (3)−0.22079 (15)0.0639 (9)
H3A0.13370.0264−0.24600.077*
C40.2524 (4)0.2067 (4)−0.25451 (14)0.0615 (8)
C50.3171 (5)0.1828 (5)−0.31363 (17)0.0876 (14)
H5A0.31280.0983−0.33000.105*
C60.3871 (5)0.2784 (7)−0.34885 (19)0.1044 (19)
H6A0.43460.2595−0.38880.125*
C70.3890 (5)0.4024 (6)−0.32672 (18)0.0925 (15)
H7A0.43590.4696−0.35130.111*
C80.3208 (4)0.4275 (4)−0.26739 (15)0.0637 (8)
C90.2571 (3)0.3325 (3)−0.22965 (13)0.0503 (7)
C100.1881 (3)0.3613 (2)−0.16413 (11)0.0398 (5)
C110.1543 (3)0.5025 (3)−0.15546 (13)0.0467 (6)
C120.2211 (4)0.5882 (3)−0.19788 (16)0.0621 (9)
C130.1977 (6)0.7205 (4)−0.1912 (2)0.0874 (14)
H13A0.24460.7775−0.22130.105*
C140.1084 (6)0.7670 (4)−0.1419 (3)0.0954 (17)
H14A0.09130.8567−0.13820.114*
C150.0399 (5)0.6845 (3)−0.09575 (19)0.0747 (11)
C16−0.0529 (6)0.7314 (5)−0.0437 (3)0.0975 (16)
H16A−0.07490.8206−0.04070.117*
C17−0.1110 (5)0.6531 (6)0.0017 (3)0.1038 (18)
H17A−0.17530.68750.03550.125*
C18−0.0773 (4)0.5204 (4)−0.00048 (18)0.0763 (11)
H18A−0.11550.46560.03220.092*
C190.0119 (4)0.4717 (3)−0.05086 (14)0.0554 (7)
H19A0.03610.3827−0.05230.067*
C200.0683 (4)0.5505 (3)−0.10016 (15)0.0512 (7)
C210.4673 (3)0.3628 (3)−0.11653 (14)0.0581 (8)
H21A0.46560.4573−0.11960.070*
H21B0.52820.3285−0.15360.070*
C220.5569 (4)0.3234 (4)−0.05865 (15)0.0674 (9)
H22A0.67810.3511−0.06100.081*
H22B0.55550.2288−0.05570.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0914 (7)0.1130 (8)0.0581 (5)−0.0041 (6)−0.0129 (5)−0.0133 (5)
O10.0330 (9)0.0667 (12)0.0600 (12)−0.0019 (9)−0.0022 (8)−0.0140 (10)
O20.0653 (14)0.0560 (11)0.0719 (14)0.0091 (10)−0.0164 (11)−0.0079 (10)
O30.0592 (12)0.1059 (17)0.0602 (13)−0.0229 (13)−0.0064 (11)0.0374 (12)
O40.0337 (8)0.0517 (9)0.0366 (9)−0.0029 (7)−0.0054 (7)0.0054 (8)
C10.0370 (13)0.0516 (13)0.0329 (12)−0.0024 (11)−0.0016 (10)−0.0019 (10)
C20.0519 (15)0.0492 (15)0.0606 (17)−0.0034 (13)−0.0072 (14)−0.0061 (13)
C30.0591 (19)0.0673 (19)0.065 (2)0.0146 (16)−0.0136 (15)−0.0207 (17)
C40.0418 (14)0.098 (2)0.0451 (15)0.0212 (16)−0.0067 (12)−0.0141 (16)
C50.057 (2)0.154 (4)0.052 (2)0.038 (2)−0.0018 (17)−0.028 (2)
C60.056 (2)0.207 (6)0.050 (2)0.024 (3)0.0092 (17)−0.007 (3)
C70.0469 (19)0.177 (5)0.053 (2)−0.004 (2)0.0046 (15)0.037 (3)
C80.0410 (14)0.101 (2)0.0493 (15)−0.0078 (16)−0.0034 (13)0.0233 (16)
C90.0310 (12)0.0801 (19)0.0399 (13)0.0032 (13)−0.0049 (10)0.0050 (14)
C100.0349 (12)0.0495 (13)0.0349 (12)−0.0024 (10)−0.0053 (10)0.0018 (10)
C110.0391 (13)0.0501 (14)0.0509 (15)−0.0063 (11)−0.0139 (11)0.0050 (12)
C120.0526 (18)0.0618 (18)0.072 (2)−0.0124 (15)−0.0249 (16)0.0204 (16)
C130.088 (3)0.057 (2)0.117 (3)−0.023 (2)−0.052 (3)0.032 (2)
C140.099 (3)0.0414 (17)0.146 (4)−0.004 (2)−0.069 (3)0.004 (2)
C150.067 (2)0.0560 (18)0.101 (3)0.0121 (17)−0.045 (2)−0.0239 (19)
C160.082 (3)0.080 (3)0.131 (4)0.031 (2)−0.044 (3)−0.053 (3)
C170.063 (2)0.142 (4)0.107 (4)0.032 (3)−0.021 (2)−0.079 (3)
C180.0557 (18)0.109 (3)0.064 (2)0.0057 (19)−0.0051 (15)−0.034 (2)
C190.0439 (14)0.0697 (18)0.0527 (17)−0.0014 (13)−0.0030 (12)−0.0148 (14)
C200.0399 (14)0.0498 (14)0.0638 (18)0.0016 (12)−0.0183 (13)−0.0121 (13)
C210.0337 (13)0.092 (2)0.0481 (15)−0.0082 (14)−0.0058 (12)0.0153 (15)
C220.0472 (16)0.094 (2)0.0613 (19)0.0008 (17)−0.0121 (15)0.0086 (17)

Geometric parameters (Å, °)

Cl1—C221.786 (4)C10—C111.509 (4)
O1—C11.201 (3)C11—C121.376 (4)
O2—C21.427 (4)C11—C201.448 (4)
O2—C31.433 (4)C12—C131.401 (5)
O3—C81.370 (5)C13—C141.353 (7)
O3—C121.376 (4)C13—H13A0.9500
O4—C211.414 (3)C14—C151.413 (6)
O4—C101.437 (3)C14—H14A0.9500
C1—C21.490 (4)C15—C161.413 (7)
C1—C101.546 (3)C15—C201.421 (4)
C2—C31.482 (4)C16—C171.347 (7)
C2—H2A1.0000C16—H16A0.9500
C3—C41.463 (5)C17—C181.411 (7)
C3—H3A1.0000C17—H17A0.9500
C4—C51.382 (5)C18—C191.378 (5)
C4—C91.418 (5)C18—H18A0.9500
C5—C61.364 (7)C19—C201.406 (5)
C5—H5A0.9500C19—H19A0.9500
C6—C71.379 (8)C21—C221.478 (4)
C6—H6A0.9500C21—H21A0.9900
C7—C81.399 (5)C21—H21B0.9900
C7—H7A0.9500C22—H22A0.9900
C8—C91.371 (4)C22—H22B0.9900
C9—C101.529 (4)
C2—O2—C362.4 (2)C12—C11—C20119.1 (3)
C8—O3—C12119.5 (2)C12—C11—C10119.3 (3)
C21—O4—C10114.88 (19)C20—C11—C10121.3 (2)
O1—C1—C2120.0 (3)C11—C12—O3124.0 (3)
O1—C1—C10122.7 (2)C11—C12—C13121.7 (4)
C2—C1—C10116.4 (2)O3—C12—C13114.3 (3)
O2—C2—C359.0 (2)C14—C13—C12120.1 (4)
O2—C2—C1120.0 (2)C14—C13—H13A120.0
C3—C2—C1113.6 (3)C12—C13—H13A120.0
O2—C2—H2A117.0C13—C14—C15121.1 (3)
C3—C2—H2A117.0C13—C14—H14A119.4
C1—C2—H2A117.0C15—C14—H14A119.4
O2—C3—C4118.3 (3)C14—C15—C16122.0 (4)
O2—C3—C258.6 (2)C14—C15—C20119.8 (4)
C4—C3—C2118.5 (3)C16—C15—C20118.2 (4)
O2—C3—H3A116.4C17—C16—C15121.8 (4)
C4—C3—H3A116.4C17—C16—H16A119.1
C2—C3—H3A116.4C15—C16—H16A119.1
C5—C4—C9120.0 (4)C16—C17—C18120.7 (4)
C5—C4—C3119.0 (4)C16—C17—H17A119.7
C9—C4—C3120.7 (3)C18—C17—H17A119.7
C6—C5—C4121.1 (5)C19—C18—C17118.8 (4)
C6—C5—H5A119.4C19—C18—H18A120.6
C4—C5—H5A119.4C17—C18—H18A120.6
C5—C6—C7120.2 (4)C18—C19—C20121.8 (3)
C5—C6—H6A119.9C18—C19—H19A119.1
C7—C6—H6A119.9C20—C19—H19A119.1
C6—C7—C8118.8 (4)C19—C20—C15118.6 (3)
C6—C7—H7A120.6C19—C20—C11123.6 (2)
C8—C7—H7A120.6C15—C20—C11117.9 (3)
O3—C8—C9121.5 (3)O4—C21—C22108.9 (2)
O3—C8—C7116.2 (4)O4—C21—H21A109.9
C9—C8—C7122.3 (4)C22—C21—H21A109.9
C8—C9—C4117.4 (3)O4—C21—H21B109.9
C8—C9—C10121.5 (3)C22—C21—H21B109.9
C4—C9—C10121.1 (3)H21A—C21—H21B108.3
O4—C10—C11110.00 (19)C21—C22—Cl1112.7 (2)
O4—C10—C9113.2 (2)C21—C22—H22A109.0
C11—C10—C9111.5 (2)Cl1—C22—H22A109.0
O4—C10—C1105.56 (18)C21—C22—H22B109.0
C11—C10—C1113.6 (2)Cl1—C22—H22B109.0
C9—C10—C1102.83 (19)H22A—C22—H22B107.8
C3—O2—C2—C1−101.1 (3)C2—C1—C10—O4−59.2 (3)
O1—C1—C2—O2−168.3 (3)O1—C1—C10—C1111.1 (3)
C10—C1—C2—O222.2 (4)C2—C1—C10—C11−179.8 (2)
O1—C1—C2—C3125.0 (3)O1—C1—C10—C9−109.5 (3)
C10—C1—C2—C3−44.4 (3)C2—C1—C10—C959.6 (3)
C2—O2—C3—C4107.8 (3)O4—C10—C11—C12112.0 (3)
C1—C2—C3—O2112.0 (3)C9—C10—C11—C12−14.3 (3)
O2—C2—C3—C4−107.5 (3)C1—C10—C11—C12−129.9 (3)
C1—C2—C3—C44.5 (4)O4—C10—C11—C20−61.6 (3)
O2—C3—C4—C5132.5 (3)C9—C10—C11—C20172.0 (2)
C2—C3—C4—C5−159.9 (3)C1—C10—C11—C2056.4 (3)
O2—C3—C4—C9−53.1 (4)C20—C11—C12—O3175.6 (2)
C2—C3—C4—C914.5 (4)C10—C11—C12—O31.8 (4)
C9—C4—C5—C60.4 (5)C20—C11—C12—C13−4.5 (4)
C3—C4—C5—C6174.8 (3)C10—C11—C12—C13−178.2 (3)
C4—C5—C6—C7−2.2 (6)C8—O3—C12—C1111.4 (4)
C5—C6—C7—C81.0 (6)C8—O3—C12—C13−168.5 (3)
C12—O3—C8—C9−9.9 (4)C11—C12—C13—C140.3 (5)
C12—O3—C8—C7167.8 (3)O3—C12—C13—C14−179.7 (3)
C6—C7—C8—O3−175.5 (3)C12—C13—C14—C151.2 (6)
C6—C7—C8—C92.2 (5)C13—C14—C15—C16179.6 (3)
O3—C8—C9—C4173.6 (3)C13—C14—C15—C201.5 (5)
C7—C8—C9—C4−3.9 (4)C14—C15—C16—C17−176.8 (4)
O3—C8—C9—C10−4.4 (4)C20—C15—C16—C171.4 (6)
C7—C8—C9—C10178.1 (3)C15—C16—C17—C181.5 (6)
C5—C4—C9—C82.7 (4)C16—C17—C18—C19−1.8 (6)
C3—C4—C9—C8−171.7 (3)C17—C18—C19—C20−0.7 (5)
C5—C4—C9—C10−179.4 (3)C18—C19—C20—C153.5 (4)
C3—C4—C9—C106.3 (4)C18—C19—C20—C11−176.6 (3)
C21—O4—C10—C11−67.8 (3)C14—C15—C20—C19174.5 (3)
C21—O4—C10—C957.6 (3)C16—C15—C20—C19−3.8 (4)
C21—O4—C10—C1169.3 (2)C14—C15—C20—C11−5.4 (4)
C8—C9—C10—O4−108.7 (3)C16—C15—C20—C11176.3 (3)
C4—C9—C10—O473.4 (3)C12—C11—C20—C19−173.0 (3)
C8—C9—C10—C1115.9 (3)C10—C11—C20—C190.7 (4)
C4—C9—C10—C11−162.0 (2)C12—C11—C20—C156.9 (4)
C8—C9—C10—C1137.9 (2)C10—C11—C20—C15−179.4 (2)
C4—C9—C10—C1−40.0 (3)C10—O4—C21—C22171.6 (2)
O1—C1—C10—O4131.7 (2)O4—C21—C22—Cl1−62.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.952.553.392 (4)147
C19—H19A···O40.952.543.084 (3)117

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2302).

References

  • Aronne, A., Turco, M., Bagnasco, G., Ramis, G., Santacesaria, E., Di Serio, M., Marenna, E., Bevilacqua, M., Cammarano, C. & Fanelli, E. (2008). Appl. Catal. A, 347, 179–185.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sasidharan, M., Wu, P. & Tatsumi, T. (2002). J. Catal.205, 332–338.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tan, D. M., Li, H. H. & Wang, B. (2001). Chin. J. Chem. 19, 91–93.
  • Wang, B., Kang, Y. R., Yang, L. M. & Suo, J. S. (2003). J. Mol. Catal. A, 203, 29–36.
  • Yamazaki, S. (2008). Tetrahedron, 64, 9253–9257.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography