PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2193.
Published online 2008 October 25. doi:  10.1107/S1600536808028407
PMCID: PMC2959590

5-(2-Phenyl­ethyn­yl)isobenzofuran-1,3-dione

Abstract

The title compound, C16H8O3, was synthesized by the Pd-coupling reaction of phenyl­acetyl­ene with 4-bromo­phthalic anhydride. The phenyl and isobenzofurane rings are nearly coplanar, forming a dihedral angle of 6.70 (10)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by C—H(...)O hydrogen bonds.

Related literature

For a general background to the synthesis and applications of the title compound, see: Hergenrother & Smith (1994 [triangle], 1996 [triangle]); Takekoshi & Terry (1994 [triangle]); Urazoe et al. (2005 [triangle]); Urazoe & Mori (2006 [triangle]). For the properties of polyimides, see: Feger et al. (1989 [triangle]); Ghosh & Mittal (1996 [triangle]). For the crystal structure of related compounds, see: Wright & Schorzman (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2193-scheme1.jpg

Experimental

Crystal data

  • C16H8O3
  • M r = 248.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2193-efi1.jpg
  • a = 6.998 (3) Å
  • b = 7.518 (3) Å
  • c = 11.683 (4) Å
  • α = 89.06 (2)°
  • β = 79.31 (3)°
  • γ = 81.04 (2)°
  • V = 596.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 294 (2) K
  • 0.50 × 0.40 × 0.22 mm

Data collection

  • Enraf–Nonius CAD4 diffractometer
  • Absorption correction: none
  • 2227 measured reflections
  • 2198 independent reflections
  • 1105 reflections with I > 2σ(I)
  • R int = 0.007
  • 3 standard reflections every 100 reflections intensity decay: 1.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.158
  • S = 1.09
  • 2198 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028407/rz2241sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028407/rz2241Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

Polyimides are well known for possessing excellent thermal and oxidative stability, as well as excellent mechanical properties (Ghosh & Mittal, 1996; Feger et al.,1989). The title compound is used as terminal endcapping agent which imparts thermal curability, thermal resistance and solvent resistance to polyimide (Hergenrother & Smith, 1994, 1996; Takekoshi & Terry, 1994). Further, various types of method for producing 4-phenylethynylphthalic anhydride have been described (Urazoe et al., 2005; Urazoe & Mori, 2006). We report here the crystal sturcture of the title compound.

In the molecule of the title compound (Fig. 1) the phenyl and isobenzofurane rings are nearly coplanar, making a dihedral angle of 6.70 (10)°. Bond distances of the ethyne chain show similar values to those in C22H13O2N (Wright & Schorzman, 2000), with the C7—C9, C9—C10 and C10—C11 distances of 1.418 (4), 1.203 (4) and 1.429 (4) Å, respectively. The bond angles within the ethyne chain are slightly bent, with the C7—C9—C10 and C9—C10—C11 angles of 176.3 (4) and 173.6 (4)°, respectively. The isobenzofurane ring is flat, atoms C2 deviating only by 0.027 (5) Å from the mean plane. In the crystal structure, centrosymmetrically related molecules are linked into dimers by intermolecular C—H···O hydrogen interactions (Table 1).

Experimental

4-Bromophthalic anhydride (5.00 g, 22.0 mmol), phenylacetylene (2.69 g, 26.4 mmol), PdCl2(PPh3)2 (0.11 g, 0.157 mmol), and PPh3 (0.22 g, 0.840 mmol) were dissolved in 40 ml of dry NEt3 under argon, and the mixture was heated to 333 K. Then CuI (0.10 g, 0.524 mmol) was added and the solution was stirred at 353 K for 12 h. The precipitated triethylammonium bromide was separated after cooling and the solvent was evaporated. The residue was recrystallized from toluene/n-hexane (1:1 v/v) twice to give 4-phenylethynylphthalic anhydride as pale yellow crystals (yield 83.6%; m.p. 424–425 K). Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an acetic anhydride solution at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq (C).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C16H8O3Z = 2
Mr = 248.22F(000) = 256
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.998 (3) ÅCell parameters from 25 reflections
b = 7.518 (3) Åθ = 4.5–11.8°
c = 11.683 (4) ŵ = 0.10 mm1
α = 89.06 (2)°T = 294 K
β = 79.31 (3)°Block, colourless
γ = 81.04 (2)°0.50 × 0.40 × 0.22 mm
V = 596.6 (4) Å3

Data collection

Enraf–Nonius CAD4 diffractometerRint = 0.007
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.7°
graphiteh = −8→8
ω/2θ scansk = −3→9
2227 measured reflectionsl = −14→14
2198 independent reflections3 standard reflections every 100 reflections
1105 reflections with I > 2σ(I) intensity decay: 1.8%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.158w = 1/[σ2(Fo2) + (0.0535P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2198 reflectionsΔρmax = 0.22 e Å3
173 parametersΔρmin = −0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4'
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5201 (3)0.1623 (3)0.3262 (2)0.0689 (8)
O20.3130 (4)0.3047 (4)0.4814 (2)0.0912 (10)
O30.6535 (3)0.0590 (3)0.1454 (2)0.0814 (9)
C10.3406 (5)0.2634 (5)0.3814 (4)0.0655 (11)
C20.5145 (5)0.1372 (5)0.2089 (4)0.0621 (10)
C30.2138 (5)0.2980 (4)0.2931 (3)0.0484 (9)
C40.3202 (4)0.2205 (4)0.1897 (3)0.0489 (9)
C50.2391 (5)0.2304 (4)0.0913 (3)0.0604 (10)
H50.30960.17770.02160.072*
C60.0505 (5)0.3205 (4)0.0986 (3)0.0570 (10)
H6−0.00730.32730.03290.068*
C7−0.0562 (4)0.4021 (4)0.2025 (3)0.0505 (9)
C80.0267 (5)0.3885 (4)0.3023 (3)0.0521 (9)
H8−0.04300.43920.37280.062*
C9−0.2470 (5)0.5020 (4)0.2070 (3)0.0607 (10)
C10−0.4084 (5)0.5899 (4)0.2170 (3)0.0603 (10)
C11−0.6025 (4)0.6902 (4)0.2426 (3)0.0534 (9)
C12−0.7133 (5)0.7369 (4)0.1575 (3)0.0594 (10)
H12−0.66150.70560.08010.071*
C13−0.9015 (5)0.8304 (5)0.1881 (4)0.0667 (11)
H13−0.97520.86380.13050.080*
C14−0.9807 (5)0.8744 (5)0.3007 (4)0.0697 (11)
H14−1.10880.93540.32040.084*
C15−0.8719 (5)0.8288 (5)0.3852 (3)0.0726 (11)
H15−0.92720.85890.46240.087*
C16−0.6828 (5)0.7396 (4)0.3586 (3)0.0647 (11)
H16−0.60880.71230.41670.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0505 (16)0.0776 (17)0.076 (2)0.0049 (13)−0.0171 (14)0.0015 (15)
O20.081 (2)0.137 (3)0.0513 (18)0.0076 (17)−0.0214 (16)−0.0083 (17)
O30.0510 (16)0.0859 (19)0.095 (2)0.0177 (14)−0.0024 (15)−0.0271 (16)
C10.054 (2)0.075 (3)0.065 (3)0.000 (2)−0.011 (2)0.001 (2)
C20.056 (3)0.058 (2)0.070 (3)−0.0026 (19)−0.010 (2)−0.004 (2)
C30.046 (2)0.049 (2)0.049 (2)−0.0002 (16)−0.0090 (18)−0.0020 (17)
C40.0405 (19)0.047 (2)0.056 (2)0.0001 (15)−0.0068 (18)−0.0085 (17)
C50.057 (2)0.061 (2)0.058 (2)0.0036 (18)−0.007 (2)−0.0159 (19)
C60.053 (2)0.064 (2)0.051 (2)0.0041 (18)−0.0135 (18)−0.0154 (18)
C70.041 (2)0.050 (2)0.057 (2)0.0056 (16)−0.0105 (18)−0.0051 (17)
C80.044 (2)0.058 (2)0.048 (2)0.0031 (17)−0.0006 (18)−0.0095 (17)
C90.054 (2)0.059 (2)0.068 (3)−0.004 (2)−0.013 (2)−0.0032 (19)
C100.061 (2)0.058 (2)0.064 (3)−0.006 (2)−0.019 (2)−0.0029 (19)
C110.036 (2)0.0445 (19)0.076 (3)0.0035 (16)−0.009 (2)−0.0023 (18)
C120.058 (2)0.058 (2)0.061 (2)−0.0038 (18)−0.012 (2)−0.0039 (18)
C130.057 (2)0.063 (2)0.085 (3)−0.005 (2)−0.028 (2)−0.003 (2)
C140.055 (2)0.063 (2)0.083 (3)0.0072 (19)−0.006 (2)−0.014 (2)
C150.074 (3)0.070 (3)0.066 (3)0.011 (2)−0.009 (2)−0.016 (2)
C160.061 (2)0.067 (3)0.065 (3)0.004 (2)−0.020 (2)−0.008 (2)

Geometric parameters (Å, °)

O1—C21.395 (4)C8—H80.9300
O1—C11.411 (4)C9—C101.203 (4)
O2—C11.186 (4)C10—C111.429 (4)
O3—C21.187 (4)C11—C121.379 (5)
C1—C31.476 (5)C11—C161.399 (4)
C2—C41.461 (4)C12—C131.379 (4)
C3—C81.365 (4)C12—H120.9300
C3—C41.381 (4)C13—C141.354 (4)
C4—C51.369 (4)C13—H130.9300
C5—C61.375 (4)C14—C151.363 (5)
C5—H50.9300C14—H140.9300
C6—C71.397 (4)C15—C161.370 (4)
C6—H60.9300C15—H150.9300
C7—C81.391 (4)C16—H160.9300
C7—C91.418 (4)
C2—O1—C1109.3 (3)C3—C8—H8121.2
O2—C1—O1121.4 (4)C7—C8—H8121.2
O2—C1—C3131.4 (4)C10—C9—C7176.3 (4)
O1—C1—C3107.2 (3)C9—C10—C11173.6 (4)
O3—C2—O1120.3 (3)C12—C11—C16119.3 (3)
O3—C2—C4132.2 (4)C12—C11—C10122.3 (3)
O1—C2—C4107.5 (3)C16—C11—C10118.3 (3)
C8—C3—C4122.4 (3)C11—C12—C13119.6 (3)
C8—C3—C1130.3 (3)C11—C12—H12120.2
C4—C3—C1107.3 (3)C13—C12—H12120.2
C5—C4—C3120.6 (3)C14—C13—C12121.0 (4)
C5—C4—C2130.8 (3)C14—C13—H13119.5
C3—C4—C2108.7 (3)C12—C13—H13119.5
C4—C5—C6118.1 (3)C13—C14—C15119.7 (4)
C4—C5—H5121.0C13—C14—H14120.2
C6—C5—H5121.0C15—C14—H14120.2
C5—C6—C7121.6 (3)C14—C15—C16121.3 (4)
C5—C6—H6119.2C14—C15—H15119.3
C7—C6—H6119.2C16—C15—H15119.3
C8—C7—C6119.8 (3)C15—C16—C11119.0 (3)
C8—C7—C9119.4 (3)C15—C16—H16120.5
C6—C7—C9120.8 (3)C11—C16—H16120.5
C3—C8—C7117.6 (3)
C2—O1—C1—O2−178.4 (4)C2—C4—C5—C6−179.3 (3)
C2—O1—C1—C31.8 (4)C4—C5—C6—C70.7 (5)
C1—O1—C2—O3178.1 (3)C5—C6—C7—C8−1.8 (5)
C1—O1—C2—C4−2.1 (4)C5—C6—C7—C9176.9 (3)
O2—C1—C3—C80.0 (7)C4—C3—C8—C7−0.4 (5)
O1—C1—C3—C8179.7 (3)C1—C3—C8—C7179.1 (3)
O2—C1—C3—C4179.5 (4)C6—C7—C8—C31.6 (5)
O1—C1—C3—C4−0.8 (4)C9—C7—C8—C3−177.2 (3)
C8—C3—C4—C5−0.7 (5)C16—C11—C12—C13−0.4 (5)
C1—C3—C4—C5179.7 (3)C10—C11—C12—C13178.6 (3)
C8—C3—C4—C2179.1 (3)C11—C12—C13—C14−1.2 (5)
C1—C3—C4—C2−0.4 (4)C12—C13—C14—C151.3 (6)
O3—C2—C4—C51.1 (7)C13—C14—C15—C160.3 (6)
O1—C2—C4—C5−178.6 (3)C14—C15—C16—C11−1.8 (6)
O3—C2—C4—C3−178.7 (4)C12—C11—C16—C151.9 (5)
O1—C2—C4—C31.5 (4)C10—C11—C16—C15−177.2 (3)
C3—C4—C5—C60.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.563.436 (5)158

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2241).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Feger, C., Khohasteh, M. M. & McGrath, J. E. (1989). Polyimides: Chemistry, Materials, and Characterization Amsterdam: Elsevier.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association Pittsburgh Meetting,. Abstract PA 104.
  • Ghosh, M. K. & Mittal, K. L. (1996). Polymides: Fundamentals and Applications New York: Dekker.
  • Hergenrother, P. M. & Smith, J. G. Jr (1994). Polymer, 35, 4857–4864.
  • Hergenrother, P. M. & Smith, J. G. Jr (1996). US Patent 5 567 800.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Takekoshi, T. & Terry, J. M. (1994). Polymer, 35, 4874–4880.
  • Urazoe, D. & Mori, H. (2006). Jpn Patent JP 2 006 151 904.
  • Urazoe, D., Mori, H. & Yamakawa, K. (2005). US Patent 2 005 215 820.
  • Wright, M. E. & Schorzman, D. A. (2000). Macromolecules, 33, 8611–8617.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography