PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1383–m1384.
Published online 2008 October 11. doi:  10.1107/S1600536808031905
PMCID: PMC2959585

trans-Bis(methanol-κO)bis­(quinoline-2-carboxyl­ato-κ2 N,O)manganese(II)

Abstract

The title compound, [Mn(C10H6NO2)2(CH4O)2], was obtained unintentionally as the product of an attempt to synthesize a polynuclear carboxyl­ate bridged manganese(III/IV) complex, using methanol to reduce the permanganate ion. The mol­ecule is centrosymmetric; the pairs of equivalent ligands coordinate trans to each other in a distorted octa­hedral geometry. Intra­molecular C—H(...)O bonds lying in the equatorial plane stabilize the mol­ecule. In the crystal, mol­ecules are linked by O—H(...)O and C—H(...)O hydrogen bonds, creating a three-dimensional supra­molecular structure. π–π and C—H(...)π inter­actions are also observed. The dihedral angle and centroid-to-centroid distance between the pyridine ring (A) and the benzene ring (B i) of a symmetrically related mol­ecule [symmetry code: (i) −1 − x, −y, −z] are 1.27 (11)° and 3.974 (2) Å, respectively. For the C—H(...)π inter­actions, the relevant distances and angles are: C(...)Cg[A ii] = 3.643 (2) Å, H(...)Cg[A ii] = 2.750 (2) Å and C—H(...)Cg[A ii] = 155 (1)° [symmetry code: (ii) x, −1 + y, z].

Related literature

For previously reported MnII complexes with the quinoline-2 carboxyl­ate ligand, see: Okabe &Koizumi (1997 [triangle]); Goher & Mautner (1993 [triangle]); Haendler (1996 [triangle]); Dobrzyńska & Jerzykiewicz (2004 [triangle]); Dobrzyńska et al. (2005 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1383-scheme1.jpg

Experimental

Crystal data

  • [Mn(C10H6NO2)2(CH4O)2]
  • M r = 463.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1383-efi1.jpg
  • a = 10.596 (5) Å
  • b = 7.243 (3) Å
  • c = 13.534 (3) Å
  • β = 106.59 (4)°
  • V = 995.5 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 100 (1) K
  • 0.43 × 0.12 × 0.09 mm

Data collection

  • Kuma KM-4 CCD κ-axis diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.873, T max = 0.902
  • 5405 measured reflections
  • 1924 independent reflections
  • 1475 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.089
  • S = 0.98
  • 1924 reflections
  • 146 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031905/su2065sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031905/su2065Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Wrocław University of Technology for financial support.

supplementary crystallographic information

Comment

The quinoline-2-carboxylate (quin-2-c) ion is known as an effective chelator. A few Mn(II) complexes with the quin-2-c ion and different coligands have been reported previously (Okabe et al., 1997, Goher et al., 1993, Haendler, 1996, Dobrzyńska et al., 2004, 2005, 2006). The title complex, (I), is centrosymmetric (Fig. 1). The quin-2-c ion coordinates in a typical O,N chelate mode. The pairs of the equivalent ligands lie trans to each other in a distorted octahedral geometry. The bite angle of the chelating ligand is 74.93 (7)° and falls in the range observed for other manganese(II) complexes with the quin-2-c ion (73.1° - 78.5°; see references quoted above). The intramolecular C—H···O bonds lying in the equatorial plane stabilize the molecule (Table 1).

In the crystal molecules are linked by O—H···O and C—H···O hydrogen bonds creating a three-dimensional supramolecular structure (see Table 1 and Fig. 2). π···π and C-H···π interactions are also observed. The dihedral angle and centroid-to-centroid distance between rings A [= N1,C1-C4,C9] and Bi [= (C4-C9)i; symmetry code (i) -1-x, -y,-z)] are 1.27° and 3.974 Å, respectively. For the C-H···π interactions the relevant distances and angles are: d(C11···Cg[Aii] = 3.643 Å, d(H11A···Cg[Aii]) = 2.750 Å with angle (C11-H11A···Cg[Aii] = 155° (symmetry code (ii) x, -1+y, z).

Experimental

Compound (I) was obtained unintentionally as the product of an attempt to synthesize the polynuclear, carboxylate bridged manganese(III/IV) complex mixing a methanol solution of quinoline-2-carboxylic acid and potassium permanganate at room temperature.

Refinement

The hydroxyl H-atom was located in a difference Fourier map and refined isotropically with the O-H distance restrained to 0.80 (3) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 - 0.96 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C atom).

Figures

Fig. 1.
The molecular structure of compound (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of compound (I), showing one layer of molecules connected by O—H···O and C—H···O hydrogen bonds (dashed lines). H and O atoms participating in O—H···O ...

Crystal data

[Mn(C10H6NO2)2(CH4O)2]F(000) = 478
Mr = 463.34Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3842 reflections
a = 10.596 (5) Åθ = 3–26°
b = 7.243 (3) ŵ = 0.71 mm1
c = 13.534 (3) ÅT = 100 K
β = 106.59 (4)°Block, yellow
V = 995.5 (7) Å30.43 × 0.12 × 0.09 mm
Z = 2

Data collection

Kuma KM-4-CCD κ-axis diffractometer1924 independent reflections
Radiation source: fine-focus sealed tube1475 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)h = −13→12
Tmin = 0.873, Tmax = 0.902k = −8→6
5405 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0573P)2] where P = (Fo2 + 2Fc2)/3
1924 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00000.00000.00000.01282 (16)
O1−0.06256 (14)0.0841 (2)−0.15489 (11)0.0151 (3)
O2−0.21857 (15)0.2157 (2)−0.28166 (11)0.0235 (4)
O3−0.08755 (15)−0.2745 (2)−0.04702 (12)0.0179 (4)
N1−0.21067 (17)0.1118 (2)−0.02417 (13)0.0126 (4)
C1−0.2606 (2)0.1766 (3)−0.11886 (16)0.0137 (5)
C2−0.3844 (2)0.2649 (3)−0.15224 (16)0.0166 (5)
H2A−0.41570.3101−0.21910.020*
C3−0.4573 (2)0.2825 (3)−0.08415 (17)0.0187 (5)
H3A−0.53910.3400−0.10470.022*
C4−0.4091 (2)0.2138 (3)0.01703 (16)0.0156 (5)
C5−0.4793 (2)0.2244 (3)0.09220 (17)0.0184 (5)
H5A−0.56120.28180.07560.022*
C6−0.4280 (2)0.1518 (3)0.18819 (17)0.0196 (5)
H6A−0.47510.16000.23640.024*
C7−0.3044 (2)0.0644 (3)0.21473 (17)0.0184 (5)
H7A−0.27130.01360.28020.022*
C8−0.2318 (2)0.0528 (3)0.14573 (16)0.0153 (5)
H8A−0.1494−0.00310.16470.018*
C9−0.2833 (2)0.1269 (3)0.04511 (16)0.0132 (5)
C10−0.1752 (2)0.1571 (3)−0.19219 (16)0.0145 (5)
C11−0.1393 (2)−0.3854 (3)0.02034 (17)0.0207 (5)
H11A−0.1730−0.4990−0.01360.031*
H11B−0.2090−0.31960.03730.031*
H11C−0.0705−0.41180.08230.031*
H3−0.141 (3)−0.280 (4)−0.102 (2)0.050 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0121 (2)0.0150 (3)0.0109 (2)0.0008 (2)0.00264 (18)0.0002 (2)
O10.0141 (8)0.0196 (8)0.0121 (7)0.0013 (6)0.0045 (6)0.0006 (6)
O20.0180 (8)0.0358 (10)0.0161 (8)0.0018 (7)0.0040 (7)0.0060 (7)
O30.0188 (8)0.0180 (8)0.0143 (8)−0.0024 (7)0.0007 (7)0.0003 (7)
N10.0132 (9)0.0113 (9)0.0131 (9)−0.0014 (7)0.0035 (7)−0.0022 (7)
C10.0121 (10)0.0118 (11)0.0168 (11)−0.0023 (8)0.0035 (9)−0.0017 (9)
C20.0149 (11)0.0158 (11)0.0179 (11)0.0003 (9)0.0027 (9)0.0044 (9)
C30.0150 (11)0.0148 (11)0.0248 (12)0.0041 (9)0.0032 (10)0.0033 (10)
C40.0154 (11)0.0113 (10)0.0200 (12)−0.0015 (8)0.0049 (9)−0.0031 (9)
C50.0141 (11)0.0157 (11)0.0265 (13)0.0004 (9)0.0078 (10)−0.0037 (10)
C60.0197 (12)0.0205 (12)0.0224 (12)−0.0037 (10)0.0120 (10)−0.0067 (10)
C70.0206 (12)0.0200 (11)0.0148 (11)−0.0023 (9)0.0053 (10)−0.0010 (9)
C80.0144 (11)0.0153 (11)0.0158 (11)0.0013 (8)0.0037 (9)−0.0026 (8)
C90.0142 (11)0.0095 (11)0.0167 (11)−0.0022 (8)0.0056 (9)−0.0018 (9)
C100.0144 (11)0.0147 (11)0.0119 (11)−0.0028 (9)−0.0001 (9)0.0003 (9)
C110.0228 (12)0.0167 (12)0.0223 (12)−0.0006 (10)0.0058 (10)0.0002 (10)

Geometric parameters (Å, °)

Mn1—O12.100 (2)C4—C91.424 (3)
Mn1—O32.209 (2)C4—C51.424 (3)
Mn1—N12.308 (2)C5—C61.363 (3)
Mn1—O1i2.100 (2)C6—C71.406 (3)
Mn1—O3i2.209 (2)C7—C81.372 (3)
Mn1—N1i2.308 (2)C8—C91.420 (3)
O1—C101.271 (3)C2—H2A0.93
O2—C101.241 (3)C3—H3A0.93
O3—C111.436 (3)C5—H5A0.93
O3—H30.80 (3)C6—H6A0.93
N1—C11.325 (3)C7—H7A0.93
N1—C91.377 (3)C8—H8A0.93
C1—C101.529 (3)C11—H11A0.96
C1—C21.413 (3)C11—H11B0.96
C2—C31.367 (3)C11—H11C0.96
C3—C41.409 (3)
O1—Mn1—O389.23 (7)C3—C4—C5123.9 (2)
O1—Mn1—N174.93 (7)C4—C5—C6120.9 (2)
O1—Mn1—O1i180.00C5—C6—C7120.4 (2)
O1—Mn1—O3i90.77 (7)C6—C7—C8121.1 (2)
O1—Mn1—N1i105.07 (7)C7—C8—C9119.6 (2)
O3—Mn1—N188.01 (7)N1—C9—C8119.1 (2)
O1i—Mn1—O390.77 (7)C4—C9—C8119.8 (2)
O3—Mn1—O3i180.00N1—C9—C4121.06 (19)
O3—Mn1—N1i91.99 (7)O2—C10—C1118.6 (2)
O1i—Mn1—N1105.07 (7)O1—C10—O2125.0 (2)
O3i—Mn1—N191.99 (7)O1—C10—C1116.33 (18)
N1—Mn1—N1i180.00C1—C2—H2A121.00
O1i—Mn1—O3i89.23 (7)C3—C2—H2A121.00
O1i—Mn1—N1i74.93 (7)C2—C3—H3A120.00
O3i—Mn1—N1i88.01 (7)C4—C3—H3A120.00
Mn1—O1—C10120.67 (14)C4—C5—H5A120.00
Mn1—O3—C11121.70 (13)C6—C5—H5A120.00
C11—O3—H3105 (2)C5—C6—H6A120.00
Mn1—O3—H3116 (2)C7—C6—H6A120.00
Mn1—N1—C9129.59 (14)C6—C7—H7A119.00
C1—N1—C9118.96 (19)C8—C7—H7A119.00
Mn1—N1—C1111.36 (15)C7—C8—H8A120.00
C2—C1—C10120.13 (19)C9—C8—H8A120.00
N1—C1—C2123.2 (2)O3—C11—H11A109.00
N1—C1—C10116.64 (19)O3—C11—H11B109.00
C1—C2—C3118.6 (2)O3—C11—H11C109.00
C2—C3—C4120.3 (2)H11A—C11—H11B109.00
C3—C4—C9117.9 (2)H11A—C11—H11C109.00
C5—C4—C9118.26 (19)H11B—C11—H11C110.00
O3—Mn1—O1—C1089.82 (16)C1—N1—C9—C4−1.3 (3)
N1—Mn1—O1—C101.67 (15)Mn1—N1—C9—C4174.99 (15)
O3i—Mn1—O1—C10−90.18 (16)Mn1—N1—C9—C8−5.6 (3)
N1i—Mn1—O1—C10−178.33 (15)C10—C1—C2—C3−179.0 (2)
O1—Mn1—O3—C11−149.62 (16)C2—C1—C10—O1176.7 (2)
N1—Mn1—O3—C11−74.68 (16)N1—C1—C10—O1−1.5 (3)
O1i—Mn1—O3—C1130.38 (16)N1—C1—C10—O2179.83 (19)
N1i—Mn1—O3—C11105.32 (16)N1—C1—C2—C3−0.9 (3)
O1—Mn1—N1—C1−2.35 (14)C2—C1—C10—O2−1.9 (3)
O1—Mn1—N1—C9−178.82 (18)C1—C2—C3—C40.1 (3)
O3—Mn1—N1—C1−92.09 (14)C2—C3—C4—C90.1 (3)
O3—Mn1—N1—C991.44 (17)C2—C3—C4—C5−179.2 (2)
O1i—Mn1—N1—C1177.65 (14)C3—C4—C9—N10.5 (3)
O1i—Mn1—N1—C91.18 (18)C3—C4—C5—C6178.7 (2)
O3i—Mn1—N1—C187.91 (14)C9—C4—C5—C6−0.6 (3)
O3i—Mn1—N1—C9−88.56 (17)C5—C4—C9—C80.4 (3)
Mn1—O1—C10—C1−0.8 (3)C3—C4—C9—C8−178.9 (2)
Mn1—O1—C10—O2177.74 (17)C5—C4—C9—N1179.8 (2)
Mn1—N1—C1—C2−175.44 (17)C4—C5—C6—C7−0.1 (3)
C9—N1—C1—C21.5 (3)C5—C6—C7—C81.1 (3)
C9—N1—C1—C10179.63 (18)C6—C7—C8—C9−1.3 (3)
Mn1—N1—C1—C102.7 (2)C7—C8—C9—N1−178.9 (2)
C1—N1—C9—C8178.2 (2)C7—C8—C9—C40.5 (3)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.80 (3)1.83 (3)2.623 (3)172 (3)
C2—H2A···O1iii0.932.583.411 (3)148
C8—H8A···O1i0.932.363.241 (3)158

Symmetry codes: (ii) −x−1/2, y−1/2, −z−1/2; (iii) −x−1/2, y+1/2, −z−1/2; (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2065).

References

  • Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Am. Chem. Soc.126, 11118–11119. [PubMed]
  • Dobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des.5, 1945–1951.
  • Dobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Słoniec, E. (2006). Pol. J. Chem.80, 1789–1797.
  • Goher, M. A. S. & Mautner, F. A. (1993). Polyhedron, 12, 1863–1870.
  • Haendler, H. M. (1996). Acta Cryst. C52, 801–803.
  • Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Poland, Wrocław, Poland.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography