PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1417–m1418.
Published online 2008 October 18. doi:  10.1107/S1600536808033229
PMCID: PMC2959580

Poly[[diaqua-μ2-hydroxido-(μ7-2-phos­pho­nato­ethane­sulfonato)­dicopper(II)] trihydrate]

Abstract

The crystal structure of the title compound, [Cu2(C2H4O6PS)(OH)(H2O)2]·3H2O, consists of two Cu2+ ions, one (O3PC2H4SO3)3− ion and one OH ion, as well as five water mol­ecules, two of which are coordinated to Cu2+. The Cu2+ ions are coordinated by six O atoms. The CuO6 polyhedra are connected by μ- and μ3-O atoms into zigzag chains along the b axis. These chains are further connected by –CH2CH2– groups to form layers, in turn building a three-dimensional framework via hydrogen bonding.

Related literature

For related structures, see: Sonnauer et al. (2007 [triangle]); Sonnauer & Stock (2008a [triangle],b [triangle]); Benedetto et al. (1997 [triangle]); Adani et al. (1998 [triangle]); Du et al. (2006a [triangle],b [triangle]); Du, Li et al. (2007 [triangle]); Du, Prosvirin & Mao (2007 [triangle]); Du, Xu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1417-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H4O6PS)(OH)(H2O)2]·3H2O
  • M r = 421.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1417-efi1.jpg
  • a = 10.553 (2) Å
  • b = 7.1312 (14) Å
  • c = 15.791 (3) Å
  • β = 105.07 (3)°
  • V = 1147.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.09 mm−1
  • T = 120 (2) K
  • 0.16 × 0.05 × 0.02 mm

Data collection

  • Bruker Nonius APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.783, T max = 0.922
  • 20855 measured reflections
  • 4352 independent reflections
  • 3542 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.089
  • S = 1.11
  • 4352 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.78 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033229/bt2803sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033229/bt2803Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Deutsche Forschungs­gemeinschaft (DFG) (Project No. STO 643/2-2).

supplementary crystallographic information

Comment

Inorganic–organic hybrid materials based on metal carboxylates, sulfonates and phosphonates are intensively investigated due to their potential application in the field of gas separation, storage, as well as catalysis, or as sensor materials. We are interested in the use of organic ligands containing two or more different functional groups for the synthesis of functionalized hybrid compounds. Although a large number of metal phosphonates and metal sulfonates have been reported in the literature, compounds based on ligands containing simultaneously a phosphonic as well as a sulfonic acid group have only recently been investigated. These few studies are limited to the use of linker molecules based on rigid phosphonoarylsulfonic acids. Our group has started a systematic investigation using the flexible linker 2-phosphonoethansulfonic acid, which has been reported in the literature (Sonnauer et al., 2007; Sonnauer & Stock, 2008a,b). Here we report the crystal structure of the new copper phosphonatosulfonate Cu2[(O3PC2H4SO3)(OH)(H2O)2](H2O)3, which was obtained from a hydrothermal reaction in a glass tube.

The title compound consists of two crystallographic independent copper(II) ions, one fully deprotonated (O3PC2H4SO3)3- anion, one hydroxide ion, as well as five water molecules (two coordinated to the copper ions)(Fig. 1). The copper ions are coordinated by six oxygen atoms and form CuO6 polyhedra. These polyhedra are connected by µ-O and µ3-O atoms. Thus, Cu—O—Cu zigzag chains of edge-sharing polyhedra are observed (Fig. 2), which are connected by the organic group –C2H4– to form layers. These layers are connected via hydrogen bonds into a three-dimensional framework (Fig. 3).

Experimental

H2O3PC2H4SO3H was synthesized as previously reported (Sonnauer & Stock, 2008b). All other reagents were of analytical grade (Aldrich and Fluka) and were used without further purification. The synthesis was performed in a glass reactor (DURAN culture tubes 12 × 100 mm D50 GL 14 M.KAP, SCHOTT 261351155). 263 µl of 2.0 M H3L (0.53 mmol), 536 µl of 2.0 M Cu(NO3)2 (1.06 mmol), and 789 µl of 2.0 M NaOH (1.59 mmol) were mixed and H2O was added to give the final volume of 2900 µl. The mixture was heated at 90 °C for 24 h. After filtration single-crystals were isolated from the filtrate.

Refinement

The hydrogen atoms of the C—H groups were positioned with idealized geometry and were refined using a riding model. The hydrogen atoms of the O—H groups were located in the Fourier difference map, their bond lengths were set to ideal values and afterwards the atom positions were refined using a riding model with U(H) = 1.2Ueq(C) or U(H) = 1.5Ueq(O).

Figures

Fig. 1.
Asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Chains of edge-sharing CuO6 polyhedra along the b-axis. Polyhedra are shaded in grey.
Fig. 3.
The framework consists of layers, which are connected via hydrogen bonds (dotted line).

Crystal data

[Cu2(C2H4O6PS)(OH)(H2O)2]·3H2OF(000) = 848
Mr = 421.25Dx = 2.438 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 30417 reflections
a = 10.553 (2) Åθ = 2.9–33.1°
b = 7.1312 (14) ŵ = 4.09 mm1
c = 15.791 (3) ÅT = 120 K
β = 105.07 (3)°Plate, colourless
V = 1147.5 (4) Å30.16 × 0.05 × 0.02 mm
Z = 4

Data collection

Bruker Nonius APEXII CCD diffractometer4352 independent reflections
Radiation source: Bruker Nonius FR591 rotating-anode3542 reflections with I > 2σ(I)
10cm confocal mirrorsRint = 0.061
Detector resolution: 4096 pixels mm-1θmax = 33.1°, θmin = 3.2°
[var phi] and ω scansh = −15→16
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −10→10
Tmin = 0.783, Tmax = 0.922l = −24→24
20855 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + 7.2829P] where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = −0.78 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.82890 (4)0.68693 (6)0.59499 (2)0.00711 (8)
Cu20.75171 (4)0.93431 (6)0.75238 (3)0.00646 (8)
P10.55820 (7)0.69233 (12)0.62006 (5)0.00591 (13)
O10.5805 (2)0.5079 (3)0.67215 (15)0.0087 (4)
O20.5796 (2)0.8648 (3)0.68088 (14)0.0082 (4)
O30.6414 (2)0.7048 (3)0.55453 (14)0.0080 (4)
S10.18276 (7)0.82114 (11)0.43204 (5)0.00632 (12)
O40.1526 (2)0.9848 (3)0.37393 (15)0.0099 (4)
O50.1833 (2)0.6481 (3)0.38242 (15)0.0097 (4)
O60.0958 (2)0.8096 (4)0.49057 (15)0.0123 (4)
C10.3885 (3)0.6862 (5)0.56008 (19)0.0083 (5)
H1A0.37250.57170.52580.010*
H1B0.33500.68200.60150.010*
C20.3448 (3)0.8532 (4)0.4986 (2)0.0096 (5)
H2A0.40440.86790.46150.012*
H2B0.34860.96670.53300.012*
O70.8254 (2)0.6840 (3)0.72394 (13)0.0067 (4)
H70.90310.66540.74820.010*
OW10.8352 (2)0.6968 (4)0.47036 (15)0.0138 (5)
H1O10.89320.75730.45690.021*
H1O21.05980.70330.59190.021*
OW21.0209 (2)0.6627 (3)0.62678 (14)0.0106 (4)
H2O10.76330.70170.43470.016*
H2O21.04030.55900.64870.016*
OW30.3840 (2)0.2617 (4)0.66291 (16)0.0153 (5)
H1O30.43950.33680.65640.023*
H2O30.37520.31950.70590.023*
OW40.1112 (2)0.3811 (4)0.73327 (16)0.0147 (5)
H1O40.16390.45690.76170.022*
H2O40.05120.38400.75740.022*
OW50.1476 (3)1.0144 (4)0.6947 (2)0.0227 (6)
H1O50.08000.97140.66260.034*
H2O50.12511.11960.70590.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.00682 (16)0.00862 (17)0.00601 (15)−0.00029 (14)0.00186 (12)0.00002 (13)
Cu20.00614 (15)0.00526 (15)0.00695 (15)−0.00005 (12)−0.00012 (11)−0.00153 (12)
P10.0060 (3)0.0054 (3)0.0054 (3)−0.0002 (3)−0.0003 (2)−0.0005 (3)
O10.0066 (10)0.0079 (10)0.0096 (10)−0.0010 (8)−0.0014 (8)0.0024 (8)
O20.0094 (10)0.0059 (9)0.0083 (9)−0.0011 (8)0.0001 (8)−0.0021 (7)
O30.0061 (9)0.0104 (10)0.0069 (9)0.0002 (8)0.0008 (7)−0.0003 (8)
S10.0069 (3)0.0057 (3)0.0059 (3)0.0002 (2)0.0007 (2)0.0003 (2)
O40.0107 (10)0.0070 (10)0.0106 (10)0.0008 (8)0.0003 (8)0.0016 (8)
O50.0124 (10)0.0064 (10)0.0093 (9)0.0006 (8)0.0008 (8)−0.0013 (8)
O60.0105 (10)0.0144 (11)0.0122 (10)0.0006 (9)0.0036 (8)0.0017 (9)
C10.0067 (12)0.0080 (12)0.0090 (11)−0.0011 (11)−0.0002 (9)0.0005 (11)
C20.0095 (13)0.0085 (13)0.0099 (12)−0.0014 (10)0.0007 (10)0.0008 (10)
O70.0069 (9)0.0050 (9)0.0077 (8)0.0004 (8)0.0010 (7)0.0000 (8)
OW10.0091 (10)0.0230 (13)0.0085 (9)−0.0046 (10)0.0010 (8)0.0012 (9)
OW20.0121 (10)0.0114 (11)0.0102 (9)0.0001 (8)0.0061 (8)0.0016 (8)
OW30.0141 (11)0.0161 (12)0.0146 (11)−0.0034 (9)0.0019 (9)0.0018 (9)
OW40.0126 (11)0.0165 (12)0.0164 (11)0.0000 (9)0.0063 (9)0.0016 (9)
OW50.0161 (13)0.0183 (13)0.0310 (15)−0.0033 (11)0.0010 (11)−0.0078 (12)

Geometric parameters (Å, °)

Cu1—O31.919 (2)O4—Cu1i2.389 (2)
Cu1—OW21.965 (2)O5—Cu2vi2.420 (2)
Cu1—OW11.988 (2)O5—Cu1ii2.424 (2)
Cu1—O72.046 (2)C1—C21.530 (4)
Cu1—O4i2.389 (2)C1—H1A0.9700
Cu1—O5ii2.424 (2)C1—H1B0.9700
Cu2—O1iii1.932 (2)C2—H2A0.9700
Cu2—O21.937 (2)C2—H2B0.9700
Cu2—O7iii2.033 (2)O7—Cu2v2.033 (2)
Cu2—O72.043 (2)O7—H70.8200
Cu2—O5iv2.420 (2)OW1—H1O10.8199
P1—O31.524 (2)OW1—H2O10.8200
P1—O11.537 (2)OW2—H1O20.8199
P1—O11.537 (2)OW2—H2O20.8200
P1—O21.541 (2)OW3—H1O30.8200
P1—C11.795 (3)OW3—H2O30.8200
O1—Cu2v1.932 (2)OW4—H1O40.8200
S1—O51.463 (2)OW4—H2O40.8200
S1—O61.465 (2)OW5—H1O50.8199
S1—O41.468 (2)OW5—H2O50.8200
S1—C21.774 (3)
O3—Cu1—OW2175.39 (9)O5—S1—O6112.38 (15)
O3—Cu1—OW188.01 (10)O5—S1—O4111.51 (13)
OW2—Cu1—OW187.60 (10)O6—S1—O4111.70 (14)
O3—Cu1—O792.77 (9)O5—S1—C2106.77 (15)
OW2—Cu1—O791.66 (9)O6—S1—C2107.42 (14)
OW1—Cu1—O7178.32 (10)O4—S1—C2106.68 (14)
O3—Cu1—O4i91.45 (9)S1—O4—Cu1i131.14 (14)
OW2—Cu1—O4i90.56 (9)S1—O5—Cu2vi134.67 (14)
OW1—Cu1—O4i98.45 (10)S1—O5—Cu1ii138.17 (14)
O7—Cu1—O4i80.05 (9)Cu2vi—O5—Cu1ii85.68 (7)
O3—Cu1—O5ii91.43 (9)C2—C1—P1114.3 (2)
OW2—Cu1—O5ii88.08 (9)C2—C1—H1A108.7
OW1—Cu1—O5ii101.37 (10)P1—C1—H1A108.7
O7—Cu1—O5ii80.11 (8)C2—C1—H1B108.7
O4i—Cu1—O5ii160.06 (8)P1—C1—H1B108.7
O1iii—Cu2—O2177.30 (10)H1A—C1—H1B107.6
O1iii—Cu2—O7iii89.73 (9)C1—C2—S1111.2 (2)
O2—Cu2—O7iii88.38 (9)C1—C2—H2A109.4
O1iii—Cu2—O791.86 (9)S1—C2—H2A109.4
O2—Cu2—O790.07 (9)C1—C2—H2B109.4
O7iii—Cu2—O7177.92 (2)S1—C2—H2B109.4
O1iii—Cu2—O5iv88.29 (9)H2A—C2—H2B108.0
O2—Cu2—O5iv89.48 (9)Cu2v—O7—Cu2122.09 (10)
O7iii—Cu2—O5iv80.47 (8)Cu2v—O7—Cu1107.67 (10)
O7—Cu2—O5iv100.90 (8)Cu2—O7—Cu1108.43 (10)
O3—P1—O1112.24 (13)Cu2v—O7—H799.9
O3—P1—O1112.24 (13)Cu2—O7—H7115.5
O3—P1—O2111.09 (13)Cu1—O7—H7101.1
O1—P1—O2111.86 (12)Cu1—OW1—H1O1119.6
O1—P1—O2111.86 (12)Cu1—OW1—H2O1114.7
O3—P1—C1108.35 (13)H1O1—OW1—H2O1114.8
O1—P1—C1104.75 (14)Cu1—OW2—H1O2117.4
O1—P1—C1104.75 (14)Cu1—OW2—H2O2108.3
O2—P1—C1108.21 (14)H1O2—OW2—H2O2119.3
P1—O1—Cu2v123.42 (14)H1O3—OW3—H2O390.8
P1—O2—Cu2122.06 (14)H1O4—OW4—H2O4103.0
P1—O3—Cu1119.75 (13)H1O5—OW5—H2O5102.8

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+3/2, y−1/2, −z+3/2; (vi) x−1/2, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
OW1—H2O1···OW3ii0.821.902.709 (3)168
OW1—H1O1···O6vii0.822.102.802 (3)144
OW2—H1O2···O6vii0.821.902.689 (3)162
OW2—H2O2···OW4vii0.821.852.634 (3)159
OW3—H1O3···O10.821.892.692 (3)166
OW3—H2O3···OW5viii0.822.162.967 (4)170
OW4—H2O4···O2viii0.821.892.707 (3)174
OW4—H1O4···OW5viii0.821.972.677 (4)144
OW5—H1O5···OW2ix0.822.322.912 (4)130
OW5—H2O5···OW4x0.821.932.735 (4)168

Symmetry codes: (ii) −x+1, −y+1, −z+1; (vii) x+1, y, z; (viii) −x+1/2, y−1/2, −z+3/2; (ix) x−1, y, z; (x) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2803).

References

  • Adani, F., Casciola, M., Jones, D. J., Massinelli, L., Montoneri, E., Rozière, J. & Vivani, R. (1998). J. Mater. Chem.8, 961–964.
  • Benedetto, A. F., Squattrito, P. J., Adani, F. & Montoneri, E. (1997). Inorg. Chim. Acta, 260, 207–216.
  • Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Du, Z.-Y., Li, X.-L., Liu, Q.-Y. & Mao, J.-G. (2007). Cryst. Growth Des.7, 1501–1507.
  • Du, Z.-Y., Prosvirin, V. A. & Mao, J.-G. (2007). Inorg. Chem.46, 9884–9894. [PubMed]
  • Du, Z.-Y., Xu, H.-B., Li, X.-L. & Mao, J.-G. (2007). Eur. J. Inorg. Chem. pp. 4520–4529.
  • Du, Z.-Y., Xu, H.-B. & Mao, J.-G. (2006a). Inorg. Chem.45, 6424–6430. [PubMed]
  • Du, Z.-Y., Xu, H.-B. & Mao, J.-G. (2006b). Inorg. Chem.45, 9780–9788. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonnauer, A., Näther, C., Höppe, H. A., Senker, J. & Stock, N. (2007). Inorg. Chem.46, 9968–9974. [PubMed]
  • Sonnauer, A. & Stock, N. (2008a). Eur. J. Inorg. Chem., doi:10.1002/ejic.200800315.
  • Sonnauer, A. & Stock, N. (2008b). J. Solid State Chem.181, 473–479.
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography