PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2166.
Published online 2008 October 22. doi:  10.1107/S1600536808033941
PMCID: PMC2959579

5,5′-Diethyl-2,2′-(triazene-1,3-di­yl)di-1,3,4-thia­diazole

Abstract

In the mol­ecule of the title compound, C8H11N7S2, the conformation about the N=N bond is trans and the thia­diazole rings are oriented at a dihedral angle of 2.92 (3)°. In the crystal structure, inter­molecular N—H(...)S hydrogen bonds link the mol­ecules into chains. There are π–π contacts between the thia­diazole rings [centroid-to-centroid distances = 3.699 (3) and 3.720 (2) Å].

Related literature

For general background, see: Bach et al. (1996 [triangle]); Clark & Hester (1991 [triangle]); Taniike et al. (1996 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2166-scheme1.jpg

Experimental

Crystal data

  • C8H11N7S2
  • M r = 269.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2166-efi1.jpg
  • a = 12.188 (2) Å
  • b = 9.1460 (18) Å
  • c = 12.790 (3) Å
  • β = 110.99 (3)°
  • V = 1331.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 294 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.926, T max = 0.962
  • 2431 measured reflections
  • 2320 independent reflections
  • 1468 reflections with I > 2σ(I)
  • R int = 0.0047
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.178
  • S = 1.00
  • 2320 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −1.06 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033941/hk2554sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033941/hk2554Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The photophysical properties of azo compounds are of large interest in the development of nonlinear optical and optical data storage materials (Bach et al., 1996; Taniike et al., 1996; Clark & Hester, 1991). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8) are oriented at a dihedral angle of 2.92 (3)°. So, they are nearly coplanar.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the thiadiazole rings, Cg2···Cg2i and Cg2···Cg1ii [symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, -z, where Cg1 and Cg2 are the centroids of the rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8), respectively] may further stabilize the structure, with centroid–centroid distances of 3.699 (3) and 3.720 (2) Å, respectively.

Experimental

For the preparation of the title compound, 5-amino-l,3,4-thiadiazole (5 mmol) was dissolved by heating in concentrated HCl (50 ml) in a water bath, after which the solution was cooled to 268 K and a solution of sodium nitrite (2.5 mmol) in water (3.5 ml) was added dropwise with stirring. The resulting bright-yellow diazonium solution was allowed to stand in ice for 30 min, after which a saturated solution of sodium acetate (100 ml, pH = 5) was added. The precipitate was removed by filtration, and purified by crystallization from toluene. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.97 and 0.96 Å for methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound.

Crystal data

C8H11N7S2F(000) = 560
Mr = 269.36Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.188 (2) Åθ = 9–12°
b = 9.1460 (18) ŵ = 0.39 mm1
c = 12.790 (3) ÅT = 294 K
β = 110.99 (3)°Block, yellow
V = 1331.1 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.005
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = −14→13
Absorption correction: ψ scan (North et al., 1968)k = 0→10
Tmin = 0.926, Tmax = 0.962l = 0→14
2431 measured reflections3 standard reflections every 120 min
2320 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.06P)2 + 3.61P] where P = (Fo2 + 2Fc2)/3
2320 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −1.06 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.26701 (14)0.49714 (19)0.57391 (10)0.0675 (5)
S20.96258 (11)0.18590 (15)0.56999 (10)0.0488 (4)
N11.3578 (5)0.6450 (6)0.4508 (4)0.0804 (16)
N21.2634 (4)0.5731 (5)0.3737 (3)0.0548 (11)
N30.7840 (4)0.0373 (5)0.4403 (3)0.0554 (12)
N40.8301 (3)0.1075 (5)0.3694 (3)0.0512 (11)
N50.9719 (4)0.2610 (5)0.3544 (3)0.0515 (11)
H5A0.94820.25560.28250.062*
N61.1099 (3)0.4124 (5)0.3558 (3)0.0463 (10)
N71.0651 (3)0.3422 (4)0.4200 (3)0.0417 (9)
C11.5073 (6)0.6346 (8)0.7641 (5)0.092
H1B1.55280.70390.81890.138*
H1C1.55700.55580.75860.138*
H1D1.44530.59680.78610.138*
C21.4558 (5)0.7082 (7)0.6535 (5)0.073
H2A1.51950.74110.63080.088*
H2B1.41350.79430.66260.088*
C31.3715 (6)0.6141 (9)0.5586 (5)0.090 (2)
C41.2070 (4)0.4920 (6)0.4245 (4)0.0466 (12)
C50.7047 (6)−0.0851 (8)0.6080 (5)0.0790 (19)
H5B0.6879−0.12210.67090.119*
H5C0.7149−0.16540.56400.119*
H5D0.6406−0.02510.56290.119*
C60.8141 (5)0.0036 (7)0.6486 (4)0.0589 (14)
H6B0.8787−0.05670.69500.071*
H6C0.80430.08370.69410.071*
C70.8436 (4)0.0651 (6)0.5493 (4)0.0509 (13)
C80.9231 (4)0.1912 (6)0.4186 (4)0.0465 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0757 (10)0.0889 (12)0.0315 (7)−0.0236 (9)0.0116 (6)0.0029 (7)
S20.0510 (7)0.0616 (8)0.0329 (6)−0.0063 (7)0.0140 (5)−0.0044 (6)
N10.073 (3)0.099 (4)0.062 (3)−0.029 (3)0.016 (3)0.013 (3)
N20.053 (3)0.066 (3)0.043 (2)−0.006 (2)0.015 (2)0.011 (2)
N30.045 (2)0.074 (3)0.049 (3)−0.006 (2)0.019 (2)−0.012 (2)
N40.044 (2)0.074 (3)0.037 (2)−0.005 (2)0.0164 (19)−0.010 (2)
N50.052 (3)0.069 (3)0.033 (2)0.004 (2)0.014 (2)0.002 (2)
N60.049 (2)0.057 (3)0.032 (2)−0.002 (2)0.0141 (19)0.0018 (19)
N70.038 (2)0.049 (2)0.036 (2)0.0040 (18)0.0114 (18)−0.0001 (18)
C10.0920.0920.0920.0000.0330.000
C20.0730.0730.0730.0000.0260.000
C30.083 (4)0.126 (6)0.047 (3)−0.045 (4)0.008 (3)0.010 (4)
C40.047 (3)0.059 (3)0.034 (2)0.007 (3)0.015 (2)0.005 (2)
C50.084 (4)0.095 (5)0.065 (4)−0.030 (4)0.035 (3)−0.004 (4)
C60.067 (3)0.072 (4)0.044 (3)−0.019 (3)0.029 (3)−0.012 (3)
C70.048 (3)0.061 (3)0.043 (3)−0.004 (3)0.015 (2)−0.010 (2)
C80.045 (3)0.053 (3)0.035 (2)0.001 (2)0.007 (2)−0.006 (2)

Geometric parameters (Å, °)

S1—C31.728 (6)C1—H1B0.9600
S1—C41.786 (5)C1—H1C0.9600
S2—C71.766 (5)C1—H1D0.9600
S2—C81.820 (5)C2—C31.541 (8)
N1—N21.384 (6)C2—H2A0.9700
N1—C31.358 (7)C2—H2B0.9700
N2—C41.328 (6)C4—N61.399 (6)
N3—N41.384 (6)C5—C61.487 (7)
N3—C71.346 (6)C5—H5B0.9600
N4—C81.325 (6)C5—H5C0.9600
N5—N71.365 (5)C5—H5D0.9600
N5—C81.338 (6)C6—C71.544 (7)
N5—H5A0.8600C6—H6B0.9700
N6—N71.306 (5)C6—H6C0.9700
C1—C21.486 (7)
C3—S1—C486.0 (3)N1—C3—S1114.6 (5)
C7—S2—C888.1 (2)C2—C3—S1124.5 (5)
C3—N1—N2113.1 (5)N2—C4—N6116.9 (4)
C4—N2—N1111.2 (4)N2—C4—S1115.1 (4)
C7—N3—N4113.3 (4)N6—C4—S1128.0 (4)
C8—N4—N3115.8 (4)C6—C5—H5B109.5
N7—N5—H5A125.1C6—C5—H5C109.5
C8—N5—N7109.7 (4)H5B—C5—H5C109.5
C8—N5—H5A125.1C6—C5—H5D109.5
N7—N6—C4108.2 (4)H5B—C5—H5D109.5
N6—N7—N5108.9 (4)H5C—C5—H5D109.5
C2—C1—H1B109.5C5—C6—C7110.8 (4)
C2—C1—H1C109.5C5—C6—H6B109.5
H1B—C1—H1C109.5C7—C6—H6B109.5
C2—C1—H1D109.5C5—C6—H6C109.5
H1B—C1—H1D109.5C7—C6—H6C109.5
H1C—C1—H1D109.5H6B—C6—H6C108.1
C1—C2—C3115.6 (6)N3—C7—C6125.8 (5)
C1—C2—H2A108.4N3—C7—S2112.5 (4)
C3—C2—H2A108.4C6—C7—S2121.7 (4)
C1—C2—H2B108.4N4—C8—N5118.5 (4)
C3—C2—H2B108.4N4—C8—S2110.2 (4)
H2A—C2—H2B107.4N5—C8—S2131.3 (4)
N1—C3—C2119.3 (6)
C3—N1—N2—C41.1 (8)N4—N3—C7—C6179.9 (5)
N2—N1—C3—C2−167.6 (6)N4—N3—C7—S20.9 (6)
N2—N1—C3—S1−1.5 (9)C5—C6—C7—N3−3.6 (8)
C1—C2—C3—N1−153.7 (7)C5—C6—C7—S2175.3 (4)
C1—C2—C3—S141.7 (9)C8—S2—C7—N3−0.6 (4)
C4—S1—C3—N11.1 (6)C8—S2—C7—C6−179.6 (5)
C4—S1—C3—C2166.4 (7)N3—N4—C8—N5179.6 (4)
C7—N3—N4—C8−0.9 (6)N3—N4—C8—S20.4 (5)
N1—N2—C4—N6−179.5 (4)N7—N5—C8—N4179.4 (4)
N1—N2—C4—S1−0.3 (6)N7—N5—C8—S2−1.6 (6)
C3—S1—C4—N2−0.5 (5)C7—S2—C8—N40.1 (4)
C3—S1—C4—N6178.7 (5)C7—S2—C8—N5−178.9 (5)
N2—C4—N6—N7−178.9 (4)C4—N6—N7—N5−178.5 (4)
S1—C4—N6—N71.9 (6)C8—N5—N7—N6−178.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5A···S2i0.862.843.631 (4)154

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2554).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem.100, 4135–4140.
  • Clark, R. J. H. & Hester, R. E. (1991). Advances in Materials Science Spectroscopy New York: John Wiley & Sons.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem.100, 15508–15516.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography