PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1395.
Published online 2008 October 15. doi:  10.1107/S1600536808031188
PMCID: PMC2959578

Poly[[μ3-N,N′-bis­(3-pyridylmeth­yl)­thio­urea-κ3 N:N′:S]iodidocopper(I)]

Abstract

In the title coordination polymer, [CuI(C13H14N4S)]n, the CuI atom is coordinated by two N atoms from two N,N′-bis­(3-pyridylmeth­yl)thio­urea ligands, as well as by the S atom of a third ligand and an I atom to confer a distorted tetra­hedral coordination at the metal centre. The coordination bonds give rise to a layer structure parallel to (010).

Related literature

For related literature, see: Li et al. (2002 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1395-scheme1.jpg

Experimental

Crystal data

  • [CuI(C13H14N4S)]
  • M r = 448.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1395-efi1.jpg
  • a = 13.3610 (10) Å
  • b = 8.3673 (7) Å
  • c = 14.2686 (11) Å
  • β = 102.001 (2)°
  • V = 1560.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.51 mm−1
  • T = 294 (2) K
  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.541, T max = 0.678
  • 8191 measured reflections
  • 2750 independent reflections
  • 2418 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.062
  • S = 1.06
  • 2750 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031188/ng2496sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031188/ng2496Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation for Young Researchers of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education (grant No. 2007QN05).

supplementary crystallographic information

Comment

Flexible ligand has been considered as one of the most important type of organic ligand for their flexibility and conformational freedom allow for greater structural diversity. N,N'-bis(3-pyridylmethyl)thiurea, as one kind of those ligand, has usually been used to construct a great variety of structurally interesting entities. such as helix, macrocycle (Zhang et al., 2006; Li et al., 2002).

The asymmetric unit of the title compound (I) is illustrated in Fig. 1. Single-crystal X-ray diffraction shows that the asymmetric unit contains one Cu crystallographically nonequivalent atom. The Cu(I) atom coordinated by two N atoms from two N,N'-bis(3-pyridylmethyl)thiourea ligands as well as by the S atom of a third ligand to confer a tetrahedral geometry at the metal center. The Cu atom coordination by two N atoms to form a one-dimensional helix, and is then linked by the bond of Cu atom and S atom to extend to a two-dimensional structure. The crystal packing is stabilized by intermolecular π–π stacking interaction (Fig. 2).

Experimental

a mixture of CuI (0.038 g, 0.2 nmol) and N,N'-bis(3-pyridylmethyl)thiurea (0.026 g, 0.1 nmol) in mole ratio of 2:1 in acetonitrile (6 cm3) was sealed in 15 cm3 Teflon-lined reactor and heated to 110°C for 10 h and then cooled to room temperature at a rate of 5°C/h. the yellow block crystal was obtianed in the yield of 35%.

The web of checkcif show one Alert level B (Hirshfeld Test Diff (M—X) I1 – Cu1.. 43.03 su), we think this is the result of the sightly distorted I atom for his unidentate coordination model.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å(aromatic) or 0.97 Å(aliphatic) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N)

Figures

Fig. 1.
The asymmetric unit of the title compound showing 30° probability ellipsoids.
Fig. 2.
The crystal packing of the title compound.

Crystal data

[CuI(C13H14N4S)]F(000) = 872
Mr = 448.78Dx = 1.910 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3234 reflections
a = 13.361 (1) Åθ = 2.8–27.7°
b = 8.3673 (7) ŵ = 3.51 mm1
c = 14.2686 (11) ÅT = 294 K
β = 102.001 (2)°Block, yellow
V = 1560.3 (2) Å30.20 × 0.15 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2750 independent reflections
Radiation source: fine-focus sealed tube2418 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→15
Tmin = 0.541, Tmax = 0.678k = −9→9
8191 measured reflectionsl = −15→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0275P)2 + 0.8144P] where P = (Fo2 + 2Fc2)/3
2750 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4137 (2)0.8305 (4)0.3317 (2)0.0340 (7)
H1A0.44690.72690.33680.041*
H1B0.45810.90360.37390.041*
C20.4006 (2)0.8893 (3)0.2301 (2)0.0290 (6)
C30.3491 (2)1.0308 (3)0.2012 (2)0.0315 (7)
H30.32201.08790.24600.038*
C40.3768 (2)1.0054 (4)0.0489 (2)0.0361 (7)
H40.36851.0441−0.01340.043*
C50.4292 (2)0.8663 (4)0.0718 (2)0.0402 (7)
H50.45650.81220.02600.048*
C60.4415 (2)0.8065 (4)0.1630 (2)0.0376 (7)
H60.47700.71150.17950.045*
C7−0.0360 (2)0.7596 (4)0.4500 (2)0.0379 (7)
H7−0.04900.79210.38630.045*
C80.0621 (2)0.7151 (4)0.4916 (2)0.0372 (7)
C90.0813 (3)0.6670 (5)0.5858 (3)0.0521 (9)
H90.14690.63650.61660.063*
C100.0020 (3)0.6648 (5)0.6337 (3)0.0571 (10)
H100.01300.63070.69700.068*
C11−0.0934 (3)0.7134 (4)0.5874 (2)0.0445 (8)
H11−0.14600.71470.62100.053*
C120.1456 (2)0.7225 (4)0.4347 (3)0.0413 (8)
H12A0.19090.63140.45020.050*
H12B0.11570.71940.36670.050*
C130.2875 (2)0.9112 (3)0.4274 (2)0.0309 (6)
Cu10.26574 (3)1.19634 (5)0.57370 (3)0.04022 (12)
N10.20322 (18)0.8710 (3)0.45837 (19)0.0397 (6)
H10.18100.93770.49520.048*
N20.31731 (18)0.8164 (3)0.36364 (17)0.0317 (6)
H20.27650.74070.33930.038*
N30.33636 (18)1.0893 (3)0.11266 (18)0.0328 (6)
N4−0.11373 (19)0.7591 (3)0.4956 (2)0.0396 (6)
S30.35264 (6)1.07993 (10)0.46956 (6)0.0397 (2)
I10.24731 (2)1.03780 (3)0.728706 (18)0.05208 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0309 (16)0.0383 (16)0.0344 (17)0.0077 (12)0.0101 (13)−0.0001 (13)
C20.0242 (14)0.0350 (16)0.0285 (16)−0.0015 (12)0.0072 (12)−0.0040 (13)
C30.0323 (16)0.0333 (16)0.0322 (17)−0.0006 (12)0.0140 (13)−0.0037 (13)
C40.0379 (17)0.0451 (17)0.0268 (16)−0.0068 (14)0.0102 (14)−0.0002 (14)
C50.0462 (19)0.0439 (18)0.0348 (18)0.0034 (15)0.0184 (15)−0.0077 (15)
C60.0418 (18)0.0334 (16)0.0396 (19)0.0072 (13)0.0134 (14)−0.0025 (14)
C70.0335 (17)0.0461 (18)0.0370 (18)−0.0018 (14)0.0139 (14)−0.0007 (15)
C80.0338 (17)0.0328 (16)0.047 (2)−0.0057 (13)0.0128 (15)−0.0044 (15)
C90.0371 (19)0.065 (2)0.052 (2)0.0022 (16)0.0035 (16)0.0058 (19)
C100.055 (2)0.076 (3)0.040 (2)−0.0008 (19)0.0097 (17)0.0101 (19)
C110.0411 (19)0.056 (2)0.040 (2)−0.0058 (16)0.0171 (15)0.0028 (17)
C120.0329 (17)0.0378 (17)0.056 (2)−0.0043 (14)0.0151 (15)−0.0110 (16)
C130.0311 (16)0.0309 (15)0.0312 (16)0.0012 (12)0.0079 (13)−0.0013 (13)
Cu10.0403 (2)0.0416 (2)0.0416 (2)−0.00434 (17)0.01496 (18)−0.00960 (18)
N10.0378 (14)0.0374 (14)0.0495 (17)−0.0068 (12)0.0223 (13)−0.0140 (13)
N20.0346 (14)0.0321 (13)0.0297 (13)−0.0022 (10)0.0097 (11)−0.0049 (11)
N30.0324 (13)0.0361 (13)0.0311 (14)−0.0004 (11)0.0099 (11)0.0023 (11)
N40.0324 (14)0.0475 (16)0.0412 (16)−0.0010 (12)0.0129 (12)0.0011 (13)
S30.0369 (4)0.0383 (4)0.0488 (5)−0.0085 (3)0.0203 (4)−0.0128 (4)
I10.07354 (19)0.04215 (15)0.04564 (16)0.00823 (11)0.02411 (12)0.01044 (10)

Geometric parameters (Å, °)

C1—N21.457 (4)C9—H90.9300
C1—C21.506 (4)C10—C111.370 (5)
C1—H1A0.9700C10—H100.9300
C1—H1B0.9700C11—N41.337 (4)
C2—C61.384 (4)C11—H110.9300
C2—C31.388 (4)C12—N11.464 (4)
C3—N31.332 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—N31.348 (4)C13—N21.330 (4)
C4—C51.363 (4)C13—N11.335 (4)
C4—H40.9300C13—S31.701 (3)
C5—C61.371 (5)Cu1—N3i2.049 (2)
C5—H50.9300Cu1—N4ii2.099 (3)
C6—H60.9300Cu1—S32.2852 (8)
C7—N41.335 (4)Cu1—I12.6341 (5)
C7—C81.372 (4)N1—H10.8600
C7—H70.9300N2—H20.8600
C8—C91.374 (5)N3—Cu1iii2.049 (2)
C8—C121.512 (4)N4—Cu1ii2.099 (3)
C9—C101.376 (5)
N2—C1—C2113.3 (2)C9—C10—H10120.3
N2—C1—H1A108.9N4—C11—C10122.4 (3)
C2—C1—H1A108.9N4—C11—H11118.8
N2—C1—H1B108.9C10—C11—H11118.8
C2—C1—H1B108.9N1—C12—C8108.8 (2)
H1A—C1—H1B107.7N1—C12—H12A109.9
C6—C2—C3117.6 (3)C8—C12—H12A109.9
C6—C2—C1121.3 (3)N1—C12—H12B109.9
C3—C2—C1121.1 (2)C8—C12—H12B109.9
N3—C3—C2123.6 (3)H12A—C12—H12B108.3
N3—C3—H3118.2N2—C13—N1118.0 (3)
C2—C3—H3118.2N2—C13—S3122.2 (2)
N3—C4—C5122.7 (3)N1—C13—S3119.8 (2)
N3—C4—H4118.6N3i—Cu1—N4ii108.54 (10)
C5—C4—H4118.6N3i—Cu1—S3106.38 (7)
C4—C5—C6119.6 (3)N4ii—Cu1—S3110.01 (8)
C4—C5—H5120.2N3i—Cu1—I1109.34 (7)
C6—C5—H5120.2N4ii—Cu1—I1103.57 (7)
C5—C6—C2119.1 (3)S3—Cu1—I1118.69 (3)
C5—C6—H6120.4C13—N1—C12125.3 (2)
C2—C6—H6120.4C13—N1—H1117.4
N4—C7—C8123.9 (3)C12—N1—H1117.4
N4—C7—H7118.0C13—N2—C1125.2 (3)
C8—C7—H7118.0C13—N2—H2117.4
C7—C8—C9118.0 (3)C1—N2—H2117.4
C7—C8—C12120.1 (3)C3—N3—C4117.3 (3)
C9—C8—C12121.9 (3)C3—N3—Cu1iii122.7 (2)
C8—C9—C10118.8 (3)C4—N3—Cu1iii119.9 (2)
C8—C9—H9120.6C7—N4—C11117.2 (3)
C10—C9—H9120.6C7—N4—Cu1ii123.0 (2)
C11—C10—C9119.5 (3)C11—N4—Cu1ii119.4 (2)
C11—C10—H10120.3C13—S3—Cu1106.95 (10)

Symmetry codes: (i) x, −y+5/2, z+1/2; (ii) −x, −y+2, −z+1; (iii) x, −y+5/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2496).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, G., Hou, H.-W., Niu, Y.-Y., Fan, Y.-T., Liu, Z.-S., Ge, T.-Z. & Xin, X.-Q. (2002). Inorg. Chim. Acta, 332, 216–222.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, X.-J., Zhou, X.-P. & Li, D. (2006). Cryst. Growth Des.6, 1440–1444.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography