PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2153.
Published online 2008 October 22. doi:  10.1107/S1600536808031681
PMCID: PMC2959574

4,4′-Imino­dipyridinium bis­(hydrogen phthalate)

Abstract

In the title salt, C10H11N3 2+·2C8H5O4 , doubly protonated 4,4′-dipyridylamine (dpa) cations participate in N—H(...)O hydrogen bonding with two hydrogen phthalate anions to form a neutral unit. Both anions contain an intramolecular O—H(...)O hydrogen bond. In the crystal structure, these units form two-dimensional layers through π–π stacking inter­actions with a centroid-to-centroid distance of 3.763 (3) Å. In turn, these layers aggregate in three dimensions by additional N—H(...)O hydrogen bonding. The assignment to the noncentrosymmetric space group P1 is corroborated by chemically unreasonable aromatic ring bond distances and poor K scale factor distributions for a disordered model in the centrosymmetric P An external file that holds a picture, illustration, etc.
Object name is e-64-o2153-efi1.jpg space group.

Related literature

For the crystal structure of dpa, see: Cordes et al. (2006 [triangle]). For a chiral dpa-containing coordination polymer, see: Montney et al. (2007 [triangle]). For carboxylic acid/imine co-crystals, see: Horiuchi et al. (2005 [triangle]); Bhogala & Nangia (2003 [triangle]). For charge-separated hydrogen bonding, see: Steiner (2002 [triangle]). For the preparation of dpa, see: Zapf et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2153-scheme1.jpg

Experimental

Crystal data

  • C10H11N3 2+·2C8H5O4
  • M r = 503.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2153-efi2.jpg
  • a = 7.858 (2) Å
  • b = 8.101 (2) Å
  • c = 9.601 (3) Å
  • α = 85.673 (5)°
  • β = 85.186 (5)°
  • γ = 68.834 (4)°
  • V = 567.3 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 (2) K
  • 0.75 × 0.60 × 0.30 mm

Data collection

  • Bruker SMART 1K diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.831, T max = 0.967
  • 6282 measured reflections
  • 2513 independent reflections
  • 2269 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.170
  • S = 1.06
  • 2513 reflections
  • 349 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031681/lh2702sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031681/lh2702Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge Michigan State University for funding this work. We thank Dr Richard J. Staples for helpful discussions.

supplementary crystallographic information

Comment

Co-crystals containing carboxylic acids and imines have exhibited enticing physical properties such as ferroelectricity (Horiuchi et al., 2005). Proton transfer between carboxylic acid and pyridine components has been observed in this class of co-crystals (Bhogala & Nangia, 2003). Charge-separated hydrogen bonding interactions serve to promote the stability of these co-crystals (Steiner, 2002). Because of locked conformation between its pyridyl rings in the solid-state, crystals of pure dpa are noncentrosymmetric (Cordes et al., 2006). Coordination polymers containing dpa have been observed to crystallize in noncentrosymmetric space groups (Montney et al., 2007). Thus we have sought to prepare chiral dpa-containing co-crystals.

The asymmetric unit of the title salt contains a doubly protonated [H2dpa]2+ dication, and two hydrogen phthalate ([phtH]-) ions (Fig. 1). The similar C—O bond lengths at the carboxylate termini marked by C17 and C28 indicate the presence of delocalized π bonds. On the other hand the C—O bond distances at C18 and C27 show greater C═O and C—O single bond character.

Each [H2dpa]2+ dication is linked to [Hpht]- anions on either side to form neutral [H2dpa][[Hpht]2 units, via N—H···O hydrogen bonding donation from both of its pyridinium termini to [Hpht]- carboxylate oxygen atoms. These neutral units then engage in π–π stacking between pyridyl and benzene rings (centroid-to-centroid distance = 3.763 Å) to construct pseudo two-dimensional layer patterns that lie parallel to the (101) crystal planes (Fig. 2).

The [H2dpa][[Hpht]2 layers are connected into the pseudo three-dimensional structure of the title compound via N—H···O hydrogen bonding mechanisms instilled by the central amine units of the [H2dpa]2+ dications (Fig. 3). Geometric parameters for the hydrogen bonding interactions are given in Table 1.

The assignment to the noncentrosymmetric space group P1 is corroborated by chemically unreasonable aromatic ring bond distances (1.0 and 1.7 Å) and poor K scale factors distributions for a disordered model in the centrosymmetric P1 space group.

Experimental

Phthalic acid was obtained commercially. 4,4'-dipyridylamine was prepared via a published procedure (Zapf et al., 1998). A mixture of phthalic acid (96 mg, 0.58 mmol) and 4,4'-dipyridylamine (50 mg, 0.29 mmol) was placed in 10.0 g water (550 mmol) in a 25 ml beaker. The solution was then heated to boiling. Large colourless blocks of the title compound were isolated after the solution was cooled to 298K and allowed to stand undisturbed for 3 d.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). All H atoms bound to O and N atoms were found via Fourier difference map and refined with Uiso = 1.2Ueq(N) or 1.2Ueq(O). The pyridinium N—H bonds were restrained with N—H = 0.89 (2) Å and the amine N—H bond was restrained with N—H = 0.85 (2) Å. The O—H distances were allowed to refine. In the absence of significant anomalous dispersion effects Friedel pairs were merged prior to the final refinement.

Figures

Fig. 1.
Asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms are represented as short gray sticks. Color codes: light-blue N, red O, black C. Hydrogen bonding is shown as dashed lines.
Fig. 2.
A pseudo layer in the title compound. Color codes: light-blue N, red O, black C, pink H. Hydrogen bonding is shown as dashed lines.
Fig. 3.
Packing diagram illustrating the stacking of layers to form the 3-D crystal structure of the title compound. Hydrogen bonding is shown as dashed lines.

Crystal data

C10H11N32+·2C8H5O4Z = 1
Mr = 503.46F(000) = 262
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.858 (2) ÅCell parameters from 6282 reflections
b = 8.101 (2) Åθ = 2.1–28.0°
c = 9.601 (3) ŵ = 0.11 mm1
α = 85.673 (5)°T = 293 K
β = 85.186 (5)°Block, colourless
γ = 68.834 (4)°0.75 × 0.60 × 0.30 mm
V = 567.3 (3) Å3

Data collection

Bruker SMART 1K diffractometer2513 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
graphiteRint = 0.014
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.831, Tmax = 0.967k = −10→10
6282 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0871P)2 + 0.2863P] where P = (Fo2 + 2Fc2)/3
2513 reflections(Δ/σ)max < 0.001
349 parametersΔρmax = 0.56 e Å3
6 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.9711 (7)0.8965 (7)1.1049 (4)0.0832 (14)
O2−0.7469 (5)0.7612 (6)1.2383 (5)0.0712 (12)
O3−0.6750 (5)0.5656 (7)1.4411 (6)0.0824 (14)
H3A−0.691 (11)0.624 (10)1.337 (9)0.099*
O4−0.8021 (6)0.3983 (6)1.5649 (5)0.0780 (13)
O50.3019 (7)1.2225 (8)0.2453 (5)0.0926 (17)
O60.0684 (5)1.3566 (6)0.1220 (5)0.0709 (12)
H7A0.043 (9)1.430 (9)0.028 (8)0.085*
O7−0.0087 (5)1.5473 (6)−0.0843 (5)0.0802 (13)
O80.1036 (5)1.7269 (5)−0.2062 (4)0.0654 (10)
N1−0.6896 (8)0.9599 (7)0.9469 (5)0.0655 (14)
H1N−0.780 (6)0.944 (9)0.995 (6)0.079*
N2−0.0792 (9)1.2304 (7)0.3688 (5)0.0760 (18)
H2N−0.047 (10)1.285 (8)0.299 (5)0.091*
N3−0.2299 (5)0.9798 (5)0.7185 (4)0.0495 (8)
H3N−0.121 (5)0.902 (6)0.751 (6)0.059*
C1−0.7118 (7)1.0624 (9)0.8305 (7)0.0714 (17)
H1−0.82891.12820.80310.086*
C2−0.5601 (8)1.0716 (7)0.7497 (5)0.0605 (14)
H2−0.57471.14240.66740.073*
C3−0.3924 (6)0.9770 (7)0.7916 (5)0.0533 (12)
C4−0.3767 (8)0.8754 (8)0.9177 (6)0.0689 (16)
H4−0.26250.81220.95170.083*
C5−0.5320 (10)0.8709 (8)0.9894 (6)0.0713 (16)
H5−0.52260.80091.07180.086*
C60.0413 (8)1.1117 (8)0.4402 (7)0.0668 (15)
H60.16431.08110.41150.080*
C7−0.0060 (7)1.0321 (7)0.5539 (6)0.0607 (13)
H70.08430.94710.60420.073*
C8−0.1878 (8)1.0729 (6)0.5996 (5)0.0517 (11)
C9−0.3186 (7)1.1998 (8)0.5237 (6)0.0618 (14)
H9−0.44241.23130.55000.074*
C10−0.2574 (9)1.2797 (8)0.4051 (6)0.0697 (15)
H10−0.34141.36730.35170.084*
C11−1.0440 (6)0.7547 (6)1.3134 (4)0.0392 (9)
C12−1.2276 (6)0.8392 (7)1.2857 (5)0.0508 (11)
H12−1.25730.91501.20650.061*
C13−1.3670 (7)0.8140 (8)1.3720 (7)0.0642 (14)
H13−1.48810.87141.35020.077*
C14−1.3265 (7)0.7059 (8)1.4877 (6)0.0639 (15)
H14−1.42030.69221.54770.077*
C15−1.1462 (7)0.6149 (7)1.5178 (5)0.0547 (12)
H15−1.12070.53801.59670.066*
C16−1.0025 (6)0.6360 (5)1.4328 (4)0.0384 (9)
C17−0.9122 (7)0.8067 (6)1.2125 (5)0.0493 (11)
C18−0.8166 (7)0.5225 (7)1.4825 (6)0.0586 (12)
C210.3638 (5)1.3702 (5)0.0345 (4)0.0391 (9)
C220.5473 (7)1.2878 (7)0.0605 (5)0.0535 (12)
H220.57971.21250.13960.064*
C230.6836 (7)1.3158 (8)−0.0294 (7)0.0640 (14)
H230.80601.2567−0.01200.077*
C240.6362 (7)1.4317 (9)−0.1449 (6)0.0632 (14)
H240.72591.4535−0.20480.076*
C250.4570 (7)1.5131 (7)−0.1694 (5)0.0539 (12)
H250.42651.5892−0.24830.065*
C260.3158 (6)1.4886 (6)−0.0825 (4)0.0420 (9)
C270.2367 (8)1.3142 (7)0.1443 (5)0.0548 (12)
C280.1238 (6)1.5967 (6)−0.1279 (5)0.0488 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.080 (3)0.110 (4)0.055 (2)−0.037 (3)0.000 (2)0.034 (2)
O20.044 (2)0.090 (3)0.076 (3)−0.0278 (18)0.0088 (17)0.023 (2)
O30.0427 (19)0.099 (3)0.106 (3)−0.030 (2)−0.022 (2)0.032 (3)
O40.081 (3)0.072 (3)0.072 (3)−0.020 (2)−0.018 (2)0.032 (2)
O50.083 (3)0.134 (5)0.058 (2)−0.047 (3)0.000 (2)0.048 (3)
O60.046 (2)0.083 (3)0.079 (3)−0.0271 (18)0.0162 (18)0.022 (2)
O70.0424 (18)0.088 (3)0.108 (3)−0.0269 (18)−0.0145 (19)0.040 (2)
O80.054 (2)0.064 (2)0.071 (2)−0.0164 (17)−0.0107 (17)0.0269 (18)
N10.071 (3)0.081 (3)0.061 (3)−0.051 (3)0.032 (2)−0.020 (2)
N20.125 (5)0.062 (3)0.051 (2)−0.054 (3)0.037 (3)0.000 (2)
N30.0458 (17)0.056 (2)0.0426 (18)−0.0175 (15)0.0023 (14)0.0135 (15)
C10.040 (3)0.084 (4)0.082 (4)−0.008 (3)−0.013 (2)−0.014 (3)
C20.084 (4)0.056 (3)0.039 (2)−0.024 (3)−0.011 (2)0.018 (2)
C30.045 (2)0.070 (3)0.050 (3)−0.028 (2)0.0135 (19)−0.015 (2)
C40.063 (3)0.066 (3)0.051 (3)0.006 (2)−0.005 (2)0.010 (2)
C50.098 (5)0.059 (3)0.049 (3)−0.025 (3)0.005 (3)0.018 (2)
C60.054 (3)0.066 (3)0.083 (4)−0.028 (2)0.018 (3)−0.015 (3)
C70.049 (3)0.067 (3)0.057 (3)−0.009 (2)−0.007 (2)−0.003 (2)
C80.076 (3)0.043 (2)0.038 (2)−0.027 (2)0.011 (2)0.0008 (17)
C90.044 (2)0.078 (4)0.063 (3)−0.021 (2)0.007 (2)−0.014 (3)
C100.082 (4)0.058 (3)0.058 (3)−0.012 (3)−0.018 (3)0.014 (2)
C110.037 (2)0.048 (2)0.0359 (19)−0.0200 (17)−0.0010 (16)0.0031 (16)
C120.040 (2)0.059 (3)0.051 (3)−0.016 (2)−0.0064 (19)0.009 (2)
C130.036 (2)0.077 (4)0.077 (4)−0.018 (2)−0.004 (2)0.002 (3)
C140.047 (3)0.078 (4)0.076 (4)−0.037 (3)0.015 (2)−0.001 (3)
C150.060 (3)0.065 (3)0.048 (3)−0.036 (2)0.006 (2)0.009 (2)
C160.041 (2)0.041 (2)0.038 (2)−0.0194 (17)−0.0055 (16)0.0053 (16)
C170.054 (3)0.055 (3)0.041 (2)−0.025 (2)0.0030 (19)0.0045 (19)
C180.054 (3)0.057 (3)0.064 (3)−0.019 (2)−0.012 (2)0.009 (2)
C210.038 (2)0.040 (2)0.039 (2)−0.0150 (16)−0.0002 (16)0.0020 (16)
C220.051 (3)0.058 (3)0.052 (3)−0.020 (2)−0.016 (2)0.014 (2)
C230.034 (2)0.077 (3)0.083 (4)−0.024 (2)−0.004 (2)0.002 (3)
C240.047 (3)0.088 (4)0.061 (3)−0.037 (3)0.015 (2)0.004 (3)
C250.050 (3)0.065 (3)0.049 (3)−0.027 (2)−0.001 (2)0.014 (2)
C260.0350 (19)0.052 (2)0.041 (2)−0.0199 (17)0.0055 (16)−0.0010 (18)
C270.062 (3)0.058 (3)0.045 (2)−0.026 (2)0.015 (2)0.004 (2)
C280.042 (2)0.051 (2)0.051 (2)−0.0165 (18)−0.0068 (18)0.013 (2)

Geometric parameters (Å, °)

O1—C171.238 (6)C7—C81.385 (7)
O2—C171.257 (6)C7—H70.9300
O2—H3A1.37 (9)C8—C91.376 (8)
O3—C181.305 (7)C9—C101.403 (8)
O3—H3A1.07 (9)C9—H90.9300
O4—C181.210 (6)C10—H100.9300
O5—C271.206 (7)C11—C121.395 (6)
O6—C271.273 (7)C11—C161.420 (6)
O6—H7A1.03 (8)C11—C171.507 (6)
O7—C281.273 (6)C12—C131.383 (7)
O7—H7A1.37 (8)C12—H120.9300
O8—C281.218 (6)C13—C141.347 (8)
N1—C51.271 (9)C13—H130.9300
N1—C11.325 (9)C14—C151.385 (8)
N1—H1N0.86 (6)C14—H140.9300
N2—C61.282 (9)C15—C161.391 (6)
N2—C101.333 (9)C15—H150.9300
N2—H2N0.85 (6)C16—C181.513 (7)
N3—C81.403 (5)C21—C221.388 (6)
N3—C31.411 (5)C21—C261.404 (6)
N3—H3N0.92 (5)C21—C271.547 (6)
C1—C21.389 (9)C22—C231.391 (7)
C1—H10.9300C22—H220.9300
C2—C31.342 (8)C23—C241.382 (9)
C2—H20.9300C23—H230.9300
C3—C41.400 (7)C24—C251.355 (8)
C4—C51.361 (9)C24—H240.9300
C4—H40.9300C25—C261.394 (6)
C5—H50.9300C25—H250.9300
C6—C71.321 (9)C26—C281.527 (6)
C6—H60.9300
C17—O2—H3A114 (4)C13—C12—C11122.2 (4)
C18—O3—H3A110 (4)C13—C12—H12118.9
C27—O6—H7A109 (4)C11—C12—H12118.9
C28—O7—H7A109 (3)C14—C13—C12119.7 (5)
C5—N1—C1121.9 (5)C14—C13—H13120.2
C5—N1—H1N116 (5)C12—C13—H13120.2
C1—N1—H1N122 (5)C13—C14—C15120.4 (5)
C6—N2—C10122.0 (5)C13—C14—H14119.8
C6—N2—H2N120 (5)C15—C14—H14119.8
C10—N2—H2N118 (5)C14—C15—C16121.4 (5)
C8—N3—C3135.3 (4)C14—C15—H15119.3
C8—N3—H3N108 (4)C16—C15—H15119.3
C3—N3—H3N117 (4)C15—C16—C11118.6 (4)
N1—C1—C2119.9 (5)C15—C16—C18113.1 (4)
N1—C1—H1120.0C11—C16—C18128.3 (4)
C2—C1—H1120.0O1—C17—O2121.0 (5)
C3—C2—C1119.2 (5)O1—C17—C11118.5 (5)
C3—C2—H2120.4O2—C17—C11120.5 (4)
C1—C2—H2120.4O4—C18—O3120.8 (5)
C2—C3—C4118.6 (5)O4—C18—C16119.8 (5)
C2—C3—N3123.6 (5)O3—C18—C16119.3 (5)
C4—C3—N3117.8 (5)C22—C21—C26118.9 (4)
C5—C4—C3118.6 (5)C22—C21—C27112.6 (4)
C5—C4—H4120.7C26—C21—C27128.5 (4)
C3—C4—H4120.7C21—C22—C23121.3 (4)
N1—C5—C4121.8 (5)C21—C22—H22119.4
N1—C5—H5119.1C23—C22—H22119.4
C4—C5—H5119.1C24—C23—C22119.6 (5)
N2—C6—C7121.3 (5)C24—C23—H23120.2
N2—C6—H6119.4C22—C23—H23120.2
C7—C6—H6119.4C25—C24—C23118.9 (4)
C6—C7—C8121.1 (5)C25—C24—H24120.5
C6—C7—H7119.4C23—C24—H24120.5
C8—C7—H7119.4C24—C25—C26123.4 (4)
C9—C8—C7118.2 (4)C24—C25—H25118.3
C9—C8—N3123.2 (5)C26—C25—H25118.3
C7—C8—N3118.5 (5)C25—C26—C21117.8 (4)
C8—C9—C10117.3 (5)C25—C26—C28114.7 (4)
C8—C9—H9121.4C21—C26—C28127.5 (3)
C10—C9—H9121.4O5—C27—O6121.4 (5)
N2—C10—C9120.1 (5)O5—C27—C21119.0 (5)
N2—C10—H10119.9O6—C27—C21119.4 (4)
C9—C10—H10119.9O8—C28—O7122.3 (5)
C12—C11—C16117.7 (4)O8—C28—C26118.4 (4)
C12—C11—C17114.6 (4)O7—C28—C26119.3 (4)
C16—C11—C17127.7 (4)
C5—N1—C1—C21.5 (9)C12—C11—C16—C18177.2 (5)
N1—C1—C2—C3−0.6 (9)C17—C11—C16—C18−4.8 (8)
C1—C2—C3—C4−1.4 (8)C12—C11—C17—O1−10.2 (7)
C1—C2—C3—N3−178.7 (5)C16—C11—C17—O1171.7 (5)
C8—N3—C3—C23.8 (8)C12—C11—C17—O2169.0 (5)
C8—N3—C3—C4−173.6 (5)C16—C11—C17—O2−9.0 (8)
C2—C3—C4—C52.7 (9)C15—C16—C18—O417.3 (7)
N3—C3—C4—C5−179.9 (5)C11—C16—C18—O4−162.1 (5)
C1—N1—C5—C4−0.2 (10)C15—C16—C18—O3−159.4 (5)
C3—C4—C5—N1−1.9 (10)C11—C16—C18—O321.3 (8)
C10—N2—C6—C70.1 (10)C26—C21—C22—C23−2.2 (8)
N2—C6—C7—C80.5 (9)C27—C21—C22—C23177.6 (5)
C6—C7—C8—C9−0.4 (8)C21—C22—C23—C241.9 (9)
C6—C7—C8—N3178.0 (5)C22—C23—C24—C25−1.3 (10)
C3—N3—C8—C91.6 (8)C23—C24—C25—C261.2 (10)
C3—N3—C8—C7−176.7 (5)C24—C25—C26—C21−1.4 (8)
C7—C8—C9—C10−0.3 (8)C24—C25—C26—C28178.6 (5)
N3—C8—C9—C10−178.6 (5)C22—C21—C26—C251.9 (7)
C6—N2—C10—C9−0.8 (9)C27—C21—C26—C25−177.9 (5)
C8—C9—C10—N20.9 (9)C22—C21—C26—C28−178.1 (5)
C16—C11—C12—C131.7 (7)C27—C21—C26—C282.1 (8)
C17—C11—C12—C13−176.5 (5)C22—C21—C27—O56.8 (7)
C11—C12—C13—C140.6 (9)C26—C21—C27—O5−173.4 (6)
C12—C13—C14—C15−2.4 (9)C22—C21—C27—O6−168.9 (5)
C13—C14—C15—C161.9 (9)C26—C21—C27—O610.9 (8)
C14—C15—C16—C110.4 (7)C25—C26—C28—O8−20.4 (7)
C14—C15—C16—C18−179.0 (5)C21—C26—C28—O8159.6 (5)
C12—C11—C16—C15−2.2 (6)C25—C26—C28—O7158.8 (5)
C17—C11—C16—C15175.9 (5)C21—C26—C28—O7−21.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O21.07 (9)1.37 (9)2.386 (6)155 (7)
O6—H7A···O71.03 (8)1.37 (8)2.396 (6)172 (7)
N1—H1N···O10.86 (6)1.90 (6)2.757 (6)177 (7)
N2—H2N···O60.85 (6)2.00 (6)2.834 (5)167 (7)
N3—H3N···O8i0.92 (5)1.88 (5)2.794 (5)172 (5)

Symmetry codes: (i) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2702).

References

  • Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des.3, 547–554.
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cordes, D. B., Hanton, L. R. & Spicer, M. D. (2006). Inorg. Chem.45, 7651–7664. [PubMed]
  • Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaora, N. & Tokura, Y. (2005). Nat. Mater.4, 163–166. [PubMed]
  • Montney, M. R., Mallika Krishnan, S., Patel, N. M., Supkowski, R. M. & LaDuca, R. L. (2007). Cryst. Growth Des.7, 1145–1153.
  • Palmer, D. (2005). CrystalMaker CrystalMaker Software Ltd, Bicester, Oxfordshire, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–76. [PubMed]
  • Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III & Zubieta, J. (1998). Inorg. Chem.37, 3411–3414.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography