PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2246.
Published online 2008 October 31. doi:  10.1107/S1600536808035010
PMCID: PMC2959572

Monoclinic modification of 1,2-bis­(diphenyl­seleno­phosphino­yl)ethane

Abstract

The complete mol­ecule of the title compound, C26H24P2Se2, is generated by crystallographic 2-fold symmetry, with the rotation axis bisecting the central C—C bond. The dihedral angle between the terminal aromatic rings is 74.1 (1)°.

Related literature

For the synthesis and related compounds, see: Lobana (1992 [triangle]); Lobana et al. (2007 [triangle]). For the triclinic modification, whose mol­ecule lies on a center-of-inversion, see: Risto et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2246-scheme1.jpg

Experimental

Crystal data

  • C26H24P2Se2
  • M r = 556.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2246-efi1.jpg
  • a = 15.828 (2) Å
  • b = 9.2057 (19) Å
  • c = 19.697 (3) Å
  • β = 121.654 (8)°
  • V = 2443.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.17 mm−1
  • T = 295 (2) K
  • 0.20 × 0.12 × 0.11 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2007 [triangle]) T min = 0.525, T max = 0.701
  • 8656 measured reflections
  • 2361 independent reflections
  • 1835 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.068
  • S = 1.15
  • 2361 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: X-AREA (Stoe & Cie, 2007 [triangle]); cell refinement: X-AREA; data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035010/ng2502sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035010/ng2502Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the University of Tehran.

supplementary crystallographic information

Comment

Organophosphorous derivatives are an important class of ligands due to their potentially applications as selective homogenous catalysis. Among this group, the increasing interest in diphosphines and their calcogenide derivatives arises from their interesting coordination properties, extractive metallurgy and catalytic properties (Lobana, 1992; Lobana, et al. 2007). Therefore, we prompted to synthesis a new derivative of calcogenide organophosphorous ligands in order to investigate its structure.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The title compound was previously published in triclinic crystal system with two half-molecules in the asymmetric unit, having inversion symmetry for both molecules (Risto, et al. 2007). Here we presents the structure in monoclinic system in which, the asymmetric unit is one half-molecule. Two Diphenylphosphinoselenoyl, (PPh2)Se, are connected through an ethane group. Two phenyl rings (C2—C7 & C8—C13) in the asymmetric are located with dihedral angle of 74.1 (1)o. Weak inter-molecular hydrogen bonds (C10—H10···Se1ii, 3.751 (4) Å) are present between neighboring molecules, assembling the molecules into a three dimensional network.

Experimental

Diphenylphosphinoethane (dppe) was prepared according to literature (Lobana, 1992). To a mixture of 3.98 g (0.01 mol) dppe in 300 ml of dried chloroform was added 1.58 g (0.02 mol) of red selenium. The reaction mixture was refluxed overnight and filtered the unreacted Se out. The resulting solution was evaporated under reduced pressure. The crystals suitable for crystallography were obtained by recrystallization from chloroform-acetonitrile (1:1).

Refinement

All H atoms were placed in calculated positions and constrained to ride on their parent atoms (Uiso(H) = 1.2(C)), with C—H = 0.93 and 0.97 Å, for aromatic and methylene, respectively.

Figures

Fig. 1.
Molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.

Crystal data

C26H24P2Se2F(000) = 1112
Mr = 556.31Dx = 1.513 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8656 reflections
a = 15.828 (2) Åθ = 2.5–29.5°
b = 9.2057 (19) ŵ = 3.17 mm1
c = 19.697 (3) ÅT = 295 K
β = 121.654 (8)°Rod, colorless
V = 2443.0 (7) Å30.20 × 0.12 × 0.11 mm
Z = 4

Data collection

Stoe IPDS-II diffractometer2361 independent reflections
Radiation source: fine-focus sealed tube1835 reflections with I > 2σ(I)
graphiteRint = 0.072
[var phi] oscillation scansθmax = 26.0°, θmin = 2.4°
Absorption correction: numerical (XSHAPE; Stoe & Cie, 2007)h = −19→16
Tmin = 0.525, Tmax = 0.701k = −11→11
8656 measured reflectionsl = −23→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0166P)2 + 3.9345P] where P = (Fo2 + 2Fc2)/3
2361 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Se10.44808 (3)1.02455 (3)0.10565 (2)0.04679 (13)
P10.52862 (6)0.83149 (8)0.15258 (5)0.02995 (18)
C10.5482 (2)0.7912 (4)0.25038 (19)0.0396 (7)
H1A0.57950.69680.26780.048*
H1B0.59280.86300.28840.048*
C20.6516 (2)0.8360 (3)0.16755 (18)0.0333 (7)
C30.6699 (2)0.9256 (3)0.1207 (2)0.0427 (8)
H30.62020.98720.08430.051*
C40.7609 (3)0.9253 (4)0.1271 (2)0.0563 (10)
H40.77200.98560.09460.068*
C50.8346 (3)0.8363 (4)0.1810 (3)0.0600 (11)
H50.89600.83610.18530.072*
C60.8188 (3)0.7477 (5)0.2286 (3)0.0661 (11)
H60.86940.68730.26540.079*
C70.7277 (3)0.7473 (4)0.2225 (2)0.0536 (9)
H70.71740.68710.25540.064*
C80.4663 (2)0.6748 (3)0.09047 (19)0.0350 (7)
C90.5078 (3)0.5379 (4)0.1130 (2)0.0547 (9)
H90.56800.52550.16070.066*
C100.4601 (4)0.4197 (4)0.0649 (3)0.0745 (14)
H100.48870.32800.08020.089*
C110.3726 (4)0.4361 (5)−0.0039 (4)0.0806 (16)
H110.34070.3554−0.03560.097*
C120.3304 (3)0.5698 (5)−0.0274 (3)0.0758 (13)
H120.26990.5806−0.07510.091*
C130.3777 (3)0.6897 (4)0.0197 (2)0.0532 (9)
H130.34920.78120.00330.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Se10.0441 (2)0.03445 (18)0.0531 (2)0.00738 (15)0.01948 (17)0.00760 (16)
P10.0314 (4)0.0303 (4)0.0278 (4)0.0010 (3)0.0153 (3)0.0020 (3)
C10.0389 (18)0.0512 (19)0.0291 (16)0.0072 (14)0.0181 (15)0.0059 (14)
C20.0333 (17)0.0365 (16)0.0297 (16)−0.0014 (13)0.0161 (14)−0.0020 (13)
C30.042 (2)0.0475 (19)0.0397 (19)0.0000 (15)0.0220 (17)0.0029 (15)
C40.060 (3)0.064 (2)0.062 (3)−0.0087 (19)0.043 (2)0.0009 (19)
C50.040 (2)0.077 (3)0.070 (3)−0.006 (2)0.033 (2)−0.009 (2)
C60.038 (2)0.079 (3)0.072 (3)0.017 (2)0.023 (2)0.014 (2)
C70.042 (2)0.063 (2)0.055 (2)0.0097 (17)0.0244 (19)0.0205 (19)
C80.0389 (19)0.0366 (16)0.0392 (19)−0.0057 (13)0.0272 (17)−0.0034 (14)
C90.069 (3)0.0364 (18)0.065 (3)−0.0034 (17)0.040 (2)0.0005 (18)
C100.113 (4)0.034 (2)0.111 (4)−0.016 (2)0.083 (4)−0.014 (2)
C110.096 (4)0.073 (3)0.108 (4)−0.049 (3)0.078 (4)−0.053 (3)
C120.058 (3)0.094 (3)0.072 (3)−0.028 (2)0.031 (2)−0.042 (3)
C130.045 (2)0.060 (2)0.049 (2)−0.0064 (17)0.021 (2)−0.0139 (18)

Geometric parameters (Å, °)

Se1—P12.0979 (9)C6—C71.383 (5)
P1—C11.822 (3)C6—H60.9300
P1—C21.809 (3)C7—H70.9300
P1—C81.812 (3)C8—C131.369 (5)
C1—C1i1.517 (6)C8—C91.382 (4)
C1—H1A0.9700C9—C101.378 (6)
C1—H1B0.9700C9—H90.9300
C2—C31.377 (4)C10—C111.344 (7)
C2—C71.386 (5)C10—H100.9300
C3—C41.379 (5)C11—C121.361 (7)
C3—H30.9300C11—H110.9300
C4—C51.364 (5)C12—C131.383 (5)
C4—H40.9300C12—H120.9300
C5—C61.362 (6)C13—H130.9300
C5—H50.9300
C2—P1—C8106.64 (13)C5—C6—C7120.1 (4)
C2—P1—C1105.13 (14)C5—C6—H6120.0
C8—P1—C1106.37 (15)C7—C6—H6120.0
C2—P1—Se1113.91 (10)C6—C7—C2120.4 (3)
C8—P1—Se1112.79 (11)C6—C7—H7119.8
C1—P1—Se1111.41 (11)C2—C7—H7119.8
C1i—C1—P1112.2 (3)C13—C8—C9118.6 (3)
C1i—C1—H1A109.2C13—C8—P1120.7 (2)
P1—C1—H1A109.2C9—C8—P1120.7 (3)
C1i—C1—H1B109.2C10—C9—C8120.2 (4)
P1—C1—H1B109.2C10—C9—H9119.9
H1A—C1—H1B107.9C8—C9—H9119.9
C3—C2—C7118.2 (3)C11—C10—C9120.5 (4)
C3—C2—P1119.4 (2)C11—C10—H10119.8
C7—C2—P1122.3 (2)C9—C10—H10119.8
C2—C3—C4121.1 (3)C10—C11—C12120.4 (4)
C2—C3—H3119.5C10—C11—H11119.8
C4—C3—H3119.5C12—C11—H11119.8
C5—C4—C3119.8 (3)C11—C12—C13119.8 (4)
C5—C4—H4120.1C11—C12—H12120.1
C3—C4—H4120.1C13—C12—H12120.1
C6—C5—C4120.3 (3)C8—C13—C12120.5 (4)
C6—C5—H5119.8C8—C13—H13119.7
C4—C5—H5119.8C12—C13—H13119.7
C2—P1—C1—C1i176.96 (11)P1—C2—C7—C6176.0 (3)
C8—P1—C1—C1i−70.17 (14)C2—P1—C8—C13−123.7 (3)
Se1—P1—C1—C1i53.12 (12)C1—P1—C8—C13124.5 (3)
C8—P1—C2—C397.9 (3)Se1—P1—C8—C132.1 (3)
C1—P1—C2—C3−149.4 (3)C2—P1—C8—C955.5 (3)
Se1—P1—C2—C3−27.1 (3)C1—P1—C8—C9−56.3 (3)
C8—P1—C2—C7−79.1 (3)Se1—P1—C8—C9−178.7 (2)
C1—P1—C2—C733.6 (3)C13—C8—C9—C10−0.2 (5)
Se1—P1—C2—C7155.8 (3)P1—C8—C9—C10−179.4 (3)
C7—C2—C3—C41.2 (5)C8—C9—C10—C11−0.6 (6)
P1—C2—C3—C4−176.0 (3)C9—C10—C11—C120.8 (7)
C2—C3—C4—C5−0.7 (6)C10—C11—C12—C13−0.1 (7)
C3—C4—C5—C60.0 (6)C9—C8—C13—C120.8 (5)
C4—C5—C6—C70.1 (7)P1—C8—C13—C12−180.0 (3)
C5—C6—C7—C20.5 (6)C11—C12—C13—C8−0.7 (6)
C3—C2—C7—C6−1.1 (5)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···Se1ii0.932.973.751 (4)143
C1—H1B···Se1i0.972.903.533 (3)124
C13—H13···Se10.932.873.410 (4)119

Symmetry codes: (ii) x, y−1, z; (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2502).

References

  • Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Lobana, T. S. (1992). In The Chemistry of Organophosphorous Compounds Chichester: Wiley.
  • Lobana, T. S., Wang, J. C. & Liu, C. W. (2007). Coord. Chem. Rev.251, 91–110.
  • Risto, M., Jahr, E. M., Oilunkaniemi, R. & Laitinen, R. S. (2007). Acta Cryst. E63, o4169.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2007). X-AREA, X-SHAPE and X-RED Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography