PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2054–o2055.
Published online 2008 October 4. doi:  10.1107/S1600536808031231
PMCID: PMC2959571

4-(4-Chloro­phenyl­sulfan­yl)-1-[(E)-2-(4-chloro­phenyl­sulfan­yl)-1-phenyl­ethen­yl]-3-phenyl-1H-pyrazole

Abstract

In the title compound, C29H20Cl2N2S2, the pyrazole ring adopts a planar conformation. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14) and 29.92 (13)°, respectively. The crystal structure is stabilized by C—H(...)N and C—H(...)π inter­actions.

Related literature

For the pharmacological and medicinal properties of the title compound, see: Baraldi et al. (1998 [triangle]); Bruno et al. (1990 [triangle]); Cottineau et al. (2002 [triangle]); Londershausen (1996 [triangle]); Chen & Li (1998 [triangle]); Mishra et al. (1998 [triangle]); Smith et al. (2001 [triangle]). For hybridization, see: Beddoes et al. (1986 [triangle]). For a related structure, see: Jin et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2054-scheme1.jpg

Experimental

Crystal data

  • C29H20Cl2N2S2
  • M r = 531.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2054-efi1.jpg
  • a = 12.3808 (4) Å
  • b = 21.4667 (7) Å
  • c = 10.4281 (4) Å
  • β = 108.181 (2)°
  • V = 2633.16 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.883, T max = 0.927
  • 31420 measured reflections
  • 6594 independent reflections
  • 4292 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.142
  • S = 1.02
  • 6594 reflections
  • 316 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031231/bt2789sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031231/bt2789Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help with the data collection.

supplementary crystallographic information

Comment

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities.

An ORTEP plot of the molecule is shown in Fig. 1. The pyrazole ring adopts a planar conformation. The sum of the bond angles at N2 of the pyrazole ring (359.34°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.340 (3) and 1.325 (3) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14)° and 29.92 (13), respectively. The crystal packing shows weak C—H···N (Tab. 1) and C—H···π interactions [C21-H21···cogi(C26,C27,C28,C29,C30,C31); symmetry operator (i) x, 1/2-y, 1/2+z: H···cog 2.956Å, C21···cog 3.808Å, C21-H21···cog 152.9°] in addition to van der Waals forces.

Experimental

To a mixture of 2-[(4-chlorophenyl)sulfanyl]-1-phenyl-1-ethanone N-(E)-2- [(4-chlorophenyl)sulfanyl]-1-phenylethylidenehydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried in anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain 4-[(4-chlorophenyl)sulfanyl]-1- (E)-2-[(4-chlorophenyl)sulfanyl]-1-phenylethenyl-3-phenyl-1H-pyrazole in 86% yield.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. The atom S1 was restrained within an effective standard deviation of 0.1 so that their Uij components approximate to isotropic bahavior.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

C29H20Cl2N2S2F(000) = 1096
Mr = 531.49Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4538 reflections
a = 12.3808 (4) Åθ = 1.9–28.4°
b = 21.4667 (7) ŵ = 0.43 mm1
c = 10.4281 (4) ÅT = 293 K
β = 108.181 (2)°Block, colorless
V = 2633.16 (16) Å30.30 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer6594 independent reflections
Radiation source: fine-focus sealed tube4292 reflections with I > 2σ(I)
graphiteRint = 0.027
ω and [var phi] scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→16
Tmin = 0.883, Tmax = 0.927k = −28→28
31420 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0499P)2 + 1.5769P] where P = (Fo2 + 2Fc2)/3
6594 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.58 e Å3
6 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.05360 (11)0.97426 (6)1.29295 (10)0.1304 (4)
Cl20.49992 (8)0.55063 (4)0.67733 (9)0.0936 (3)
S1−0.22821 (6)0.89305 (5)0.68804 (10)0.0988 (3)
S20.13985 (5)0.72882 (3)0.29751 (6)0.05543 (17)
N2−0.03047 (14)0.82027 (8)0.48954 (18)0.0442 (4)
N10.06227 (14)0.85803 (8)0.52541 (18)0.0458 (4)
C40.08940 (18)0.77699 (10)0.4007 (2)0.0457 (5)
C50.13504 (17)0.83241 (10)0.4710 (2)0.0432 (5)
C3−0.01665 (18)0.77170 (10)0.4154 (2)0.0474 (5)
H3−0.06920.74020.38040.057*
C6−0.12269 (18)0.83142 (11)0.5402 (2)0.0487 (5)
C7−0.1128 (2)0.87324 (13)0.6357 (3)0.0660 (7)
H7−0.04300.89240.67560.079*
C8−0.1672 (2)0.91670 (13)0.8564 (3)0.0708 (7)
C9−0.0600 (2)0.90247 (14)0.9387 (3)0.0749 (8)
H9−0.01080.88040.90400.090*
C10−0.0243 (3)0.92044 (15)1.0718 (4)0.0844 (9)
H100.04900.91101.12620.101*
C11−0.0963 (3)0.95220 (14)1.1244 (3)0.0815 (9)
C12−0.2020 (3)0.96751 (19)1.0443 (4)0.1049 (12)
H12−0.25040.98991.07970.126*
C13−0.2377 (3)0.95004 (19)0.9112 (4)0.1074 (13)
H13−0.31040.96080.85700.129*
C14−0.22593 (18)0.79358 (11)0.4766 (2)0.0521 (5)
C15−0.3037 (2)0.81280 (15)0.3589 (3)0.0748 (8)
H15−0.29180.84970.31860.090*
C16−0.4000 (3)0.7778 (2)0.2995 (4)0.0977 (11)
H16−0.45240.79110.21920.117*
C17−0.4182 (3)0.7247 (2)0.3572 (4)0.1013 (13)
H17−0.48340.70140.31710.122*
C18−0.3416 (4)0.7046 (2)0.4741 (4)0.1147 (15)
H18−0.35440.66770.51370.138*
C19−0.2445 (3)0.73921 (16)0.5344 (3)0.0901 (10)
H19−0.19190.72540.61410.108*
C200.23637 (18)0.67789 (10)0.4109 (2)0.0465 (5)
C210.3060 (2)0.64266 (12)0.3584 (3)0.0584 (6)
H210.29850.64560.26700.070*
C220.3863 (2)0.60336 (12)0.4394 (3)0.0656 (7)
H220.43330.58010.40350.079*
C230.3961 (2)0.59894 (11)0.5732 (3)0.0615 (6)
C240.3265 (2)0.63248 (13)0.6277 (3)0.0653 (7)
H240.33330.62860.71870.078*
C250.2463 (2)0.67213 (12)0.5457 (2)0.0571 (6)
H250.19890.69500.58170.069*
C260.24546 (18)0.86348 (11)0.4912 (2)0.0471 (5)
C270.34364 (19)0.83066 (12)0.5004 (2)0.0544 (6)
H270.34020.78780.48640.065*
C280.4473 (2)0.86127 (14)0.5304 (3)0.0653 (7)
H280.51300.83890.53640.078*
C290.4531 (2)0.92423 (15)0.5512 (3)0.0738 (8)
H290.52280.94450.57250.089*
C300.3564 (2)0.95734 (14)0.5405 (3)0.0780 (8)
H300.36041.00030.55340.094*
C310.2524 (2)0.92733 (12)0.5107 (3)0.0637 (7)
H310.18700.95020.50390.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1506 (10)0.1492 (10)0.0782 (6)0.0227 (8)0.0167 (6)−0.0108 (6)
Cl20.0875 (6)0.0736 (5)0.1054 (6)0.0208 (4)0.0094 (5)0.0060 (4)
S10.0426 (4)0.1458 (8)0.1049 (6)0.0127 (4)0.0184 (4)−0.0526 (6)
S20.0496 (3)0.0730 (4)0.0426 (3)0.0013 (3)0.0128 (2)−0.0085 (3)
N20.0340 (9)0.0478 (10)0.0491 (10)−0.0018 (7)0.0103 (7)0.0014 (8)
N10.0401 (9)0.0447 (9)0.0511 (10)−0.0051 (7)0.0119 (8)0.0017 (8)
C40.0388 (11)0.0537 (12)0.0425 (11)−0.0019 (9)0.0097 (9)−0.0018 (9)
C50.0382 (11)0.0498 (12)0.0404 (10)−0.0024 (9)0.0103 (8)0.0055 (9)
C30.0373 (11)0.0513 (12)0.0504 (12)−0.0036 (9)0.0089 (9)−0.0035 (10)
C60.0351 (11)0.0543 (13)0.0546 (13)0.0051 (9)0.0109 (9)0.0013 (10)
C70.0375 (12)0.0774 (17)0.0822 (18)0.0019 (11)0.0173 (12)−0.0179 (15)
C80.0533 (15)0.0706 (17)0.089 (2)0.0111 (13)0.0222 (14)−0.0161 (15)
C90.0548 (16)0.0710 (18)0.099 (2)0.0148 (13)0.0241 (15)−0.0101 (16)
C100.0685 (19)0.084 (2)0.092 (2)0.0161 (16)0.0113 (16)0.0015 (18)
C110.091 (2)0.0686 (18)0.080 (2)0.0153 (16)0.0203 (17)−0.0020 (15)
C120.103 (3)0.118 (3)0.092 (2)0.049 (2)0.028 (2)−0.021 (2)
C130.074 (2)0.142 (3)0.098 (3)0.051 (2)0.0150 (18)−0.031 (2)
C140.0384 (11)0.0631 (14)0.0565 (13)−0.0014 (10)0.0175 (10)−0.0032 (11)
C150.0466 (14)0.087 (2)0.0811 (19)−0.0006 (13)0.0055 (13)0.0086 (16)
C160.0480 (16)0.140 (3)0.090 (2)−0.0098 (19)−0.0007 (15)−0.009 (2)
C170.072 (2)0.147 (4)0.092 (3)−0.055 (2)0.0362 (19)−0.042 (2)
C180.135 (4)0.118 (3)0.096 (3)−0.071 (3)0.043 (3)−0.011 (2)
C190.099 (2)0.091 (2)0.0697 (19)−0.0358 (19)0.0118 (17)0.0075 (17)
C200.0432 (11)0.0498 (12)0.0489 (12)−0.0083 (9)0.0177 (9)−0.0106 (10)
C210.0645 (15)0.0629 (15)0.0545 (14)−0.0016 (12)0.0283 (12)−0.0093 (12)
C220.0661 (16)0.0593 (15)0.0797 (18)0.0048 (13)0.0347 (14)−0.0102 (13)
C230.0583 (15)0.0484 (13)0.0731 (17)−0.0009 (11)0.0136 (13)−0.0042 (12)
C240.0750 (18)0.0684 (16)0.0510 (14)0.0034 (14)0.0175 (12)−0.0034 (12)
C250.0569 (14)0.0674 (15)0.0510 (13)0.0055 (12)0.0227 (11)−0.0067 (11)
C260.0421 (11)0.0585 (13)0.0391 (11)−0.0097 (10)0.0103 (9)0.0051 (9)
C270.0453 (12)0.0629 (14)0.0555 (13)−0.0062 (11)0.0164 (10)−0.0006 (11)
C280.0421 (13)0.0853 (19)0.0682 (16)−0.0075 (12)0.0167 (11)0.0051 (14)
C290.0478 (15)0.085 (2)0.0841 (19)−0.0233 (14)0.0140 (13)0.0101 (16)
C300.0644 (18)0.0612 (16)0.102 (2)−0.0207 (14)0.0169 (16)0.0073 (15)
C310.0503 (14)0.0570 (15)0.0802 (18)−0.0086 (11)0.0150 (12)0.0087 (13)

Geometric parameters (Å, °)

Cl1—C111.735 (3)C15—H150.9300
Cl2—C231.742 (3)C16—C171.340 (5)
S1—C71.734 (3)C16—H160.9300
S1—C81.756 (3)C17—C181.360 (6)
S2—C41.742 (2)C17—H170.9300
S2—C201.772 (2)C18—C191.386 (5)
N2—C31.340 (3)C18—H180.9300
N2—N11.359 (2)C19—H190.9300
N2—C61.420 (3)C20—C251.378 (3)
N1—C51.325 (3)C20—C211.382 (3)
C4—C31.373 (3)C21—C221.375 (4)
C4—C51.419 (3)C21—H210.9300
C5—C261.476 (3)C22—C231.366 (4)
C3—H30.9300C22—H220.9300
C6—C71.318 (3)C23—C241.374 (4)
C6—C141.485 (3)C24—C251.383 (4)
C7—H70.9300C24—H240.9300
C8—C91.371 (4)C25—H250.9300
C8—C131.383 (4)C26—C271.382 (3)
C9—C101.374 (4)C26—C311.384 (3)
C9—H90.9300C27—C281.388 (3)
C10—C111.366 (4)C27—H270.9300
C10—H100.9300C28—C291.367 (4)
C11—C121.355 (5)C28—H280.9300
C12—C131.371 (5)C29—C301.367 (4)
C12—H120.9300C29—H290.9300
C13—H130.9300C30—C311.386 (3)
C14—C191.365 (4)C30—H300.9300
C14—C151.366 (4)C31—H310.9300
C15—C161.382 (4)
C7—S1—C8104.26 (13)C15—C16—H16119.9
C4—S2—C20104.53 (10)C16—C17—C18120.2 (3)
C3—N2—N1111.96 (17)C16—C17—H17119.9
C3—N2—C6127.43 (18)C18—C17—H17119.9
N1—N2—C6120.35 (17)C17—C18—C19120.0 (4)
C5—N1—N2105.27 (17)C17—C18—H18120.0
C3—C4—C5104.59 (19)C19—C18—H18120.0
C3—C4—S2124.02 (17)C14—C19—C18120.0 (3)
C5—C4—S2130.90 (16)C14—C19—H19120.0
N1—C5—C4110.79 (18)C18—C19—H19120.0
N1—C5—C26118.32 (19)C25—C20—C21119.2 (2)
C4—C5—C26130.9 (2)C25—C20—S2124.29 (17)
N2—C3—C4107.39 (19)C21—C20—S2116.56 (18)
N2—C3—H3126.3C22—C21—C20120.9 (2)
C4—C3—H3126.3C22—C21—H21119.6
C7—C6—N2120.0 (2)C20—C21—H21119.6
C7—C6—C14125.0 (2)C23—C22—C21119.2 (2)
N2—C6—C14114.93 (19)C23—C22—H22120.4
C6—C7—S1120.9 (2)C21—C22—H22120.4
C6—C7—H7119.5C22—C23—C24121.3 (2)
S1—C7—H7119.5C22—C23—Cl2119.4 (2)
C9—C8—C13117.9 (3)C24—C23—Cl2119.3 (2)
C9—C8—S1126.3 (2)C23—C24—C25119.2 (2)
C13—C8—S1115.7 (2)C23—C24—H24120.4
C8—C9—C10120.9 (3)C25—C24—H24120.4
C8—C9—H9119.6C20—C25—C24120.3 (2)
C10—C9—H9119.6C20—C25—H25119.8
C11—C10—C9120.1 (3)C24—C25—H25119.8
C11—C10—H10120.0C27—C26—C31118.8 (2)
C9—C10—H10120.0C27—C26—C5122.3 (2)
C12—C11—C10119.9 (3)C31—C26—C5118.7 (2)
C12—C11—Cl1119.3 (3)C26—C27—C28120.4 (2)
C10—C11—Cl1120.8 (3)C26—C27—H27119.8
C11—C12—C13120.1 (3)C28—C27—H27119.8
C11—C12—H12119.9C29—C28—C27120.2 (3)
C13—C12—H12119.9C29—C28—H28119.9
C12—C13—C8121.0 (3)C27—C28—H28119.9
C12—C13—H13119.5C30—C29—C28120.0 (2)
C8—C13—H13119.5C30—C29—H29120.0
C19—C14—C15119.1 (3)C28—C29—H29120.0
C19—C14—C6120.7 (2)C29—C30—C31120.4 (3)
C15—C14—C6120.2 (2)C29—C30—H30119.8
C14—C15—C16120.4 (3)C31—C30—H30119.8
C14—C15—H15119.8C26—C31—C30120.2 (3)
C16—C15—H15119.8C26—C31—H31119.9
C17—C16—C15120.2 (3)C30—C31—H31119.9
C17—C16—H16119.9
C3—N2—N1—C50.5 (2)C7—C6—C14—C1594.6 (3)
C6—N2—N1—C5175.07 (18)N2—C6—C14—C15−84.7 (3)
C20—S2—C4—C3−104.7 (2)C19—C14—C15—C160.2 (5)
C20—S2—C4—C584.6 (2)C6—C14—C15—C16−179.9 (3)
N2—N1—C5—C4−0.8 (2)C14—C15—C16—C170.3 (5)
N2—N1—C5—C26179.40 (17)C15—C16—C17—C18−0.5 (6)
C3—C4—C5—N10.8 (2)C16—C17—C18—C190.1 (7)
S2—C4—C5—N1172.85 (17)C15—C14—C19—C18−0.5 (5)
C3—C4—C5—C26−179.5 (2)C6—C14—C19—C18179.6 (3)
S2—C4—C5—C26−7.4 (4)C17—C18—C19—C140.3 (6)
N1—N2—C3—C4−0.1 (2)C4—S2—C20—C2511.8 (2)
C6—N2—C3—C4−174.1 (2)C4—S2—C20—C21−167.52 (18)
C5—C4—C3—N2−0.4 (2)C25—C20—C21—C22−1.6 (4)
S2—C4—C3—N2−173.19 (16)S2—C20—C21—C22177.8 (2)
C3—N2—C6—C7164.7 (2)C20—C21—C22—C230.6 (4)
N1—N2—C6—C7−8.9 (3)C21—C22—C23—C240.7 (4)
C3—N2—C6—C14−15.9 (3)C21—C22—C23—Cl2−178.5 (2)
N1—N2—C6—C14170.50 (18)C22—C23—C24—C25−1.0 (4)
N2—C6—C7—S1173.84 (18)Cl2—C23—C24—C25178.2 (2)
C14—C6—C7—S1−5.5 (4)C21—C20—C25—C241.2 (4)
C8—S1—C7—C6152.2 (2)S2—C20—C25—C24−178.1 (2)
C7—S1—C8—C9−19.9 (3)C23—C24—C25—C200.0 (4)
C7—S1—C8—C13163.8 (3)N1—C5—C26—C27147.7 (2)
C13—C8—C9—C100.5 (5)C4—C5—C26—C27−32.0 (3)
S1—C8—C9—C10−175.8 (3)N1—C5—C26—C31−27.8 (3)
C8—C9—C10—C110.9 (5)C4—C5—C26—C31152.5 (2)
C9—C10—C11—C12−1.8 (6)C31—C26—C27—C280.8 (3)
C9—C10—C11—Cl1179.0 (3)C5—C26—C27—C28−174.7 (2)
C10—C11—C12—C131.4 (6)C26—C27—C28—C290.0 (4)
Cl1—C11—C12—C13−179.4 (3)C27—C28—C29—C30−0.9 (4)
C11—C12—C13—C80.0 (7)C28—C29—C30—C311.0 (5)
C9—C8—C13—C12−1.0 (6)C27—C26—C31—C30−0.7 (4)
S1—C8—C13—C12175.7 (4)C5—C26—C31—C30174.9 (2)
C7—C6—C14—C19−85.5 (4)C29—C30—C31—C26−0.1 (5)
N2—C6—C14—C1995.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···N10.932.442.772 (3)101

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2789).

References

  • Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  • Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–166. [PubMed]
  • Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ.19, 572–576.
  • Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem.12, 2105–2108. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [PubMed]
  • Londershausen, M. (1996). Pestic. Sci.48, 269–274.
  • Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol.432, 107–119. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography