PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2132–o2133.
Published online 2008 October 18. doi:  10.1107/S1600536808033126
PMCID: PMC2959566

4-(Cyclo­hexyl­sulfan­yl)-1-[(E)-2-(cyclo­hexyl­sulfan­yl)-1-phenyl­ethen­yl]-3-phenyl-1H-pyrazole

Abstract

In the title compound, C29H34N2S2, the pyrazole ring is planar and both cyclo­hexane rings adopt chair conformations. The dihedral angles between the pyrazole ring and the two benzene rings are 59.9 (2) and 19.8 (2)°. The conformation and packing of the mol­ecules in the unit cell are stabilized by a weak intra­molecular C—H(...)S and C—H(...)N interactions, in addition to van der Waals forces.

Related literature

For pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998 [triangle]); Bruno et al. (1990 [triangle]); Cottineau et al. (2002 [triangle]); Londershausen (1996 [triangle]); Chen & Li (1998 [triangle]); Mishra et al. (1998 [triangle]); Smith et al. (2001 [triangle]). For hybridization, see: Beddoes et al. (1986 [triangle]). For puckering and asymmetry analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]). Manikannan (2008 [triangle]) describes other compounds formed along with the title compound in its synthesis.

An external file that holds a picture, illustration, etc.
Object name is e-64-o2132-scheme1.jpg

Experimental

Crystal data

  • C29H34N2S2
  • M r = 474.70
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2132-efi1.jpg
  • a = 6.3859 (5) Å
  • b = 19.1596 (17) Å
  • c = 21.337 (2) Å
  • V = 2610.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 293 (2) K
  • 0.25 × 0.21 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.936, T max = 0.965
  • 19948 measured reflections
  • 7787 independent reflections
  • 4945 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.149
  • S = 1.02
  • 7787 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3381 Friedel pairs
  • Flack parameter: −0.01 (8)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033126/zl2138sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033126/zl2138Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help in data collection.

supplementary crystallographic information

Comment

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen, 1996) properties. Some pyrazole derivatives were successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) properties.

An ORTEP plot of the molecule is shown in Fig. 1 and a packing plot in Fig. 2. The pyrazole ring adopts a planar conformation. The sum of the angles at N1 of the pyrazole ring (359.95°) is in accordance with sp2 hybridization (Beddoes et al., 1986). Both the cyclohexane rings in the molecule adopt chair conformations which can be seen from the puckering (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983). The values for the ring C8-C13 are: q2 = 0.010 (4) Å, q3 = - 0.562 (4) Å, π = 186 (22)°, Δs(C9) and Δs(C12) =0.5 (4)° and for ring C20-C25 are: q2 = 0.014 (4) Å, q3 = - 0.572 (4) Å, π = 132 (14)°, Δs(C22) and Δs(C25) = 0.3 (3)°.

The best least-squares planes calculated for the two cyclohexane rings (atoms C8, C9, C11 & C12 lie in the plane and C10 & C13 deviate for one of the rings; atoms C21, C22, C24 & C25 lie in the plane and C20 & C23 deviate for the other ring ) are twisted from the pyrazole ring by 50.06 (17)° and 69.71 (15), respectively. The crystal packing is augmented by weak intramolecular C—H···N and C—H···S interactions in addition to van der Waals forces.

Experimental

A mixture of 2-(cyclohexylsulfanyl)-1-phenyl-1-ethanone N-[(E)-2- (cyclohexylsulfanyl)-1-phenylethylidene]hydrazone (0.003 mole) and 3 ml of dimethyl formamide were kept in an ice bath at 273 K and phosphorus oxychloride (0.024 mole) was added dropwise for 5 to 10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate as the eluent (99:1 v/v, Rf index of the title compound: 0.8336). The isolated title compound was recrystallized from dichloromethane to obtain 4-(cyclohexylsulfanyl) -1-[(E)-2-(cyclohexylsulfanyl)-1-phenylethenyl]-3 -phenyl-1H -pyrazole (title compound) and 4-(cyclohexyl sulfanyl)-1-[Z-2 -(cyclohexylsulfanyl)-1-phenyl-1-ethenyl]-3-phenyl-1H-pyrazole in 38% and 60% yield. The compounds identified through column are characterized by NMR studies (Manikannan, 2008).

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.
Perspective view of the molecule with thermal ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radius.
Fig. 2.
The packing of the molecules in the unit cell viewed down the a axis.

Crystal data

C29H34N2S2F(000) = 1016
Mr = 474.70Dx = 1.208 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2320 reflections
a = 6.3859 (5) Åθ = 1.4–30.3°
b = 19.1596 (17) ŵ = 0.22 mm1
c = 21.337 (2) ÅT = 293 K
V = 2610.7 (4) Å3Block, colorless
Z = 40.25 × 0.21 × 0.19 mm

Data collection

Bruker APEXII CCD area-detector diffractometer7787 independent reflections
Radiation source: fine-focus sealed tube4945 reflections with I > 2σ(I)
graphiteRint = 0.031
ω and [var phi] scansθmax = 30.3°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→8
Tmin = 0.936, Tmax = 0.965k = −27→27
19948 measured reflectionsl = −30→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149w = 1/[σ2(Fo2) + (0.0724P)2 + 0.1893P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7787 reflectionsΔρmax = 0.31 e Å3
298 parametersΔρmin = −0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 3381 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.40978 (12)0.48628 (4)0.39564 (3)0.0608 (2)
S20.40247 (11)0.64092 (3)0.23133 (3)0.05671 (18)
N10.8399 (3)0.61798 (10)0.36277 (10)0.0481 (5)
N20.8853 (3)0.56795 (10)0.32015 (9)0.0467 (4)
C30.7544 (4)0.57046 (13)0.27104 (12)0.0490 (5)
H30.75920.54160.23600.059*
C40.6130 (4)0.62265 (12)0.28137 (11)0.0480 (5)
C50.6735 (4)0.65155 (12)0.33978 (11)0.0466 (5)
C61.0582 (4)0.52201 (12)0.33064 (11)0.0450 (5)
C71.1971 (4)0.53826 (14)0.37473 (12)0.0532 (6)
H71.17950.58030.39590.064*
C81.4367 (4)0.51105 (14)0.47716 (13)0.0548 (6)
H81.44700.56200.47980.066*
C91.2542 (5)0.4872 (2)0.51640 (15)0.0790 (10)
H9A1.23770.43720.51170.095*
H9B1.12750.50930.50110.095*
C101.2808 (6)0.5042 (3)0.58490 (18)0.1023 (14)
H10A1.16380.48540.60850.123*
H10B1.28230.55440.59060.123*
C111.4836 (5)0.4733 (2)0.60921 (17)0.0874 (10)
H11A1.50420.48770.65240.105*
H11B1.47410.42280.60840.105*
C121.6674 (5)0.49605 (19)0.57090 (18)0.0821 (10)
H12A1.79250.47290.58620.098*
H12B1.68700.54600.57580.098*
C131.6387 (4)0.47926 (18)0.50208 (15)0.0691 (8)
H13A1.63500.42900.49650.083*
H13B1.75660.49740.47850.083*
C141.0638 (4)0.45828 (13)0.29141 (11)0.0477 (5)
C151.2456 (4)0.44122 (15)0.25948 (13)0.0584 (7)
H151.36170.47050.26140.070*
C161.2534 (5)0.38010 (18)0.22451 (14)0.0707 (8)
H161.37570.36830.20330.085*
C171.0840 (6)0.33739 (16)0.22097 (15)0.0765 (9)
H171.09040.29650.19750.092*
C180.9053 (6)0.35457 (15)0.25173 (15)0.0728 (8)
H180.78900.32550.24880.087*
C190.8942 (5)0.41443 (14)0.28721 (13)0.0589 (6)
H190.77130.42520.30850.071*
C200.5010 (4)0.71168 (13)0.18284 (13)0.0502 (6)
H200.52670.75240.20960.060*
C210.6984 (5)0.69469 (18)0.14829 (16)0.0715 (9)
H21A0.67790.65260.12380.086*
H21B0.81000.68600.17810.086*
C220.7614 (5)0.7546 (2)0.10494 (18)0.0823 (10)
H22A0.79650.79530.12990.099*
H22B0.88500.74130.08140.099*
C230.5874 (6)0.7732 (2)0.05995 (16)0.0823 (9)
H23A0.62850.81330.03510.099*
H23B0.56300.73440.03160.099*
C240.3890 (5)0.78953 (16)0.09496 (17)0.0755 (9)
H24A0.27760.79900.06530.091*
H24B0.40970.83100.12020.091*
C250.3260 (4)0.72955 (15)0.13670 (15)0.0613 (7)
H25A0.29470.68900.11120.074*
H25B0.20040.74190.15970.074*
C260.5914 (4)0.71108 (11)0.37568 (11)0.0478 (5)
C270.3886 (5)0.73724 (14)0.36781 (15)0.0626 (7)
H270.29790.71650.33920.075*
C280.3239 (5)0.79383 (15)0.40263 (17)0.0736 (9)
H280.19050.81190.39610.088*
C290.4492 (6)0.82374 (16)0.44595 (16)0.0739 (9)
H290.40200.86170.46920.089*
C300.6466 (6)0.79767 (16)0.45541 (16)0.0755 (9)
H300.73350.81750.48550.091*
C310.7160 (5)0.74201 (14)0.42013 (14)0.0625 (7)
H310.85060.72500.42660.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0537 (3)0.0746 (4)0.0542 (4)0.0223 (3)−0.0076 (3)−0.0031 (3)
S20.0476 (3)0.0660 (4)0.0565 (4)−0.0031 (3)−0.0134 (3)0.0156 (3)
N10.0514 (11)0.0490 (10)0.0439 (11)0.0077 (8)−0.0057 (9)0.0028 (9)
N20.0481 (11)0.0523 (10)0.0396 (10)0.0112 (9)−0.0039 (9)0.0015 (8)
C30.0512 (13)0.0583 (13)0.0375 (12)0.0060 (11)−0.0024 (11)0.0043 (11)
C40.0468 (12)0.0525 (12)0.0446 (13)0.0036 (10)−0.0073 (11)0.0103 (10)
C50.0483 (12)0.0474 (12)0.0440 (13)0.0046 (10)−0.0028 (10)0.0095 (10)
C60.0436 (12)0.0500 (12)0.0413 (12)0.0083 (10)0.0026 (10)0.0077 (10)
C70.0522 (14)0.0550 (13)0.0524 (15)0.0113 (11)−0.0070 (12)0.0019 (12)
C80.0525 (14)0.0580 (13)0.0539 (14)0.0098 (11)−0.0140 (12)−0.0015 (12)
C90.0445 (14)0.131 (3)0.0620 (19)0.0160 (17)−0.0067 (13)−0.0031 (19)
C100.076 (2)0.172 (4)0.059 (2)0.041 (3)−0.0054 (18)0.001 (2)
C110.073 (2)0.124 (3)0.065 (2)0.014 (2)−0.0145 (18)0.017 (2)
C120.0695 (19)0.091 (2)0.085 (2)−0.0139 (17)−0.0374 (18)0.0172 (19)
C130.0418 (15)0.091 (2)0.075 (2)−0.0011 (13)−0.0132 (13)0.0102 (17)
C140.0514 (13)0.0534 (12)0.0383 (12)0.0087 (11)0.0007 (10)0.0052 (10)
C150.0529 (14)0.0738 (17)0.0485 (15)0.0122 (12)0.0076 (12)0.0020 (13)
C160.0710 (18)0.089 (2)0.0520 (17)0.0305 (17)0.0058 (15)−0.0081 (15)
C170.095 (2)0.0715 (18)0.0629 (19)0.0181 (19)−0.008 (2)−0.0199 (15)
C180.078 (2)0.0649 (17)0.076 (2)−0.0043 (16)−0.0062 (19)−0.0089 (15)
C190.0571 (14)0.0597 (14)0.0598 (16)0.0037 (13)0.0053 (14)−0.0028 (12)
C200.0465 (12)0.0551 (13)0.0489 (14)0.0034 (10)−0.0100 (11)0.0050 (11)
C210.0566 (16)0.094 (2)0.0641 (19)0.0183 (15)0.0000 (15)0.0214 (17)
C220.0532 (16)0.115 (3)0.079 (2)0.0054 (17)0.0047 (16)0.034 (2)
C230.082 (2)0.101 (2)0.0641 (19)0.003 (2)−0.0034 (19)0.0330 (17)
C240.0654 (18)0.0767 (19)0.084 (2)0.0102 (16)−0.0185 (18)0.0206 (16)
C250.0490 (14)0.0675 (16)0.0673 (18)0.0021 (12)−0.0159 (13)0.0154 (14)
C260.0527 (13)0.0439 (11)0.0469 (13)0.0055 (11)0.0008 (11)0.0104 (10)
C270.0570 (15)0.0603 (15)0.0705 (18)0.0097 (13)−0.0064 (15)0.0051 (13)
C280.075 (2)0.0659 (17)0.080 (2)0.0235 (15)0.0031 (18)0.0023 (16)
C290.095 (2)0.0579 (16)0.069 (2)0.0210 (16)0.0033 (19)−0.0031 (15)
C300.094 (2)0.0654 (18)0.067 (2)0.0087 (16)−0.0096 (17)−0.0061 (15)
C310.0674 (18)0.0601 (16)0.0600 (17)0.0098 (14)−0.0075 (14)−0.0014 (13)

Geometric parameters (Å, °)

S1—C71.742 (2)C16—C171.359 (5)
S1—C81.811 (3)C16—H160.9300
S2—C41.752 (2)C17—C181.357 (5)
S2—C201.818 (3)C17—H170.9300
N1—C51.335 (3)C18—C191.376 (4)
N1—N21.353 (3)C18—H180.9300
N2—C31.341 (3)C19—H190.9300
N2—C61.429 (3)C20—C211.496 (4)
C3—C41.365 (3)C20—C251.528 (3)
C3—H30.9300C20—H200.9800
C4—C51.417 (3)C21—C221.529 (4)
C5—C261.471 (3)C21—H21A0.9700
C6—C71.330 (3)C21—H21B0.9700
C6—C141.481 (3)C22—C231.511 (4)
C7—H70.9300C22—H22A0.9700
C8—C91.506 (4)C22—H22B0.9700
C8—C131.522 (4)C23—C241.504 (5)
C8—H80.9800C23—H23A0.9700
C9—C101.507 (5)C23—H23B0.9700
C9—H9A0.9700C24—C251.508 (4)
C9—H9B0.9700C24—H24A0.9700
C10—C111.515 (5)C24—H24B0.9700
C10—H10A0.9700C25—H25A0.9700
C10—H10B0.9700C25—H25B0.9700
C11—C121.495 (5)C26—C311.373 (4)
C11—H11A0.9700C26—C271.399 (4)
C11—H11B0.9700C27—C281.378 (4)
C12—C131.514 (5)C27—H270.9300
C12—H12A0.9700C28—C291.350 (5)
C12—H12B0.9700C28—H280.9300
C13—H13A0.9700C29—C301.371 (5)
C13—H13B0.9700C29—H290.9300
C14—C191.374 (4)C30—C311.379 (4)
C14—C151.385 (3)C30—H300.9300
C15—C161.390 (4)C31—H310.9300
C15—H150.9300
C7—S1—C899.80 (12)C15—C16—H16119.7
C4—S2—C20103.31 (11)C18—C17—C16119.8 (3)
C5—N1—N2105.4 (2)C18—C17—H17120.1
C3—N2—N1111.50 (19)C16—C17—H17120.1
C3—N2—C6128.7 (2)C17—C18—C19120.8 (3)
N1—N2—C6119.76 (19)C17—C18—H18119.6
N2—C3—C4108.2 (2)C19—C18—H18119.6
N2—C3—H3125.9C14—C19—C18120.3 (3)
C4—C3—H3125.9C14—C19—H19119.8
C3—C4—C5104.3 (2)C18—C19—H19119.8
C3—C4—S2123.7 (2)C21—C20—C25110.3 (2)
C5—C4—S2131.83 (19)C21—C20—S2114.20 (19)
N1—C5—C4110.6 (2)C25—C20—S2106.29 (18)
N1—C5—C26117.8 (2)C21—C20—H20108.6
C4—C5—C26131.6 (2)C25—C20—H20108.6
C7—C6—N2118.8 (2)S2—C20—H20108.6
C7—C6—C14125.2 (2)C20—C21—C22110.9 (3)
N2—C6—C14116.0 (2)C20—C21—H21A109.5
C6—C7—S1124.6 (2)C22—C21—H21A109.5
C6—C7—H7117.7C20—C21—H21B109.5
S1—C7—H7117.7C22—C21—H21B109.5
C9—C8—C13109.9 (2)H21A—C21—H21B108.0
C9—C8—S1112.4 (2)C23—C22—C21111.6 (3)
C13—C8—S1108.1 (2)C23—C22—H22A109.3
C9—C8—H8108.8C21—C22—H22A109.3
C13—C8—H8108.8C23—C22—H22B109.3
S1—C8—H8108.8C21—C22—H22B109.3
C8—C9—C10112.8 (3)H22A—C22—H22B108.0
C8—C9—H9A109.0C24—C23—C22110.7 (3)
C10—C9—H9A109.0C24—C23—H23A109.5
C8—C9—H9B109.0C22—C23—H23A109.5
C10—C9—H9B109.0C24—C23—H23B109.5
H9A—C9—H9B107.8C22—C23—H23B109.5
C9—C10—C11110.1 (3)H23A—C23—H23B108.1
C9—C10—H10A109.6C23—C24—C25111.0 (3)
C11—C10—H10A109.6C23—C24—H24A109.4
C9—C10—H10B109.6C25—C24—H24A109.4
C11—C10—H10B109.6C23—C24—H24B109.4
H10A—C10—H10B108.1C25—C24—H24B109.4
C12—C11—C10111.7 (3)H24A—C24—H24B108.0
C12—C11—H11A109.3C24—C25—C20110.9 (2)
C10—C11—H11A109.3C24—C25—H25A109.5
C12—C11—H11B109.3C20—C25—H25A109.5
C10—C11—H11B109.3C24—C25—H25B109.5
H11A—C11—H11B107.9C20—C25—H25B109.5
C11—C12—C13111.9 (3)H25A—C25—H25B108.1
C11—C12—H12A109.2C31—C26—C27117.7 (2)
C13—C12—H12A109.2C31—C26—C5119.2 (2)
C11—C12—H12B109.2C27—C26—C5123.1 (2)
C13—C12—H12B109.2C28—C27—C26119.7 (3)
H12A—C12—H12B107.9C28—C27—H27120.2
C12—C13—C8110.9 (3)C26—C27—H27120.2
C12—C13—H13A109.5C29—C28—C27121.7 (3)
C8—C13—H13A109.5C29—C28—H28119.1
C12—C13—H13B109.5C27—C28—H28119.1
C8—C13—H13B109.5C28—C29—C30119.4 (3)
H13A—C13—H13B108.1C28—C29—H29120.3
C19—C14—C15119.0 (2)C30—C29—H29120.3
C19—C14—C6121.5 (2)C29—C30—C31119.8 (3)
C15—C14—C6119.5 (2)C29—C30—H30120.1
C14—C15—C16119.5 (3)C31—C30—H30120.1
C14—C15—H15120.2C26—C31—C30121.7 (3)
C16—C15—H15120.2C26—C31—H31119.2
C17—C16—C15120.6 (3)C30—C31—H31119.2
C17—C16—H16119.7
C5—N1—N2—C31.2 (3)C7—C6—C14—C15−51.7 (4)
C5—N1—N2—C6179.9 (2)N2—C6—C14—C15129.7 (2)
N1—N2—C3—C4−1.5 (3)C19—C14—C15—C16−0.6 (4)
C6—N2—C3—C4179.9 (2)C6—C14—C15—C16177.7 (2)
N2—C3—C4—C51.1 (3)C14—C15—C16—C170.6 (4)
N2—C3—C4—S2−175.90 (18)C15—C16—C17—C180.1 (5)
C20—S2—C4—C3−96.9 (2)C16—C17—C18—C19−0.8 (5)
C20—S2—C4—C586.9 (3)C15—C14—C19—C18−0.1 (4)
N2—N1—C5—C4−0.4 (3)C6—C14—C19—C18−178.3 (3)
N2—N1—C5—C26−178.1 (2)C17—C18—C19—C140.8 (5)
C3—C4—C5—N1−0.5 (3)C4—S2—C20—C2157.0 (2)
S2—C4—C5—N1176.23 (19)C4—S2—C20—C25178.85 (19)
C3—C4—C5—C26176.9 (3)C25—C20—C21—C2256.0 (4)
S2—C4—C5—C26−6.4 (4)S2—C20—C21—C22175.7 (2)
C3—N2—C6—C7164.4 (2)C20—C21—C22—C23−55.8 (4)
N1—N2—C6—C7−14.1 (3)C21—C22—C23—C2455.3 (4)
C3—N2—C6—C14−16.9 (3)C22—C23—C24—C25−56.3 (4)
N1—N2—C6—C14164.5 (2)C23—C24—C25—C2057.3 (4)
N2—C6—C7—S1177.14 (18)C21—C20—C25—C24−57.3 (3)
C14—C6—C7—S1−1.4 (4)S2—C20—C25—C24178.4 (2)
C8—S1—C7—C6−150.7 (2)N1—C5—C26—C3118.0 (3)
C7—S1—C8—C967.3 (2)C4—C5—C26—C31−159.2 (3)
C7—S1—C8—C13−171.3 (2)N1—C5—C26—C27−160.5 (2)
C13—C8—C9—C1056.4 (4)C4—C5—C26—C2722.3 (4)
S1—C8—C9—C10176.9 (3)C31—C26—C27—C282.3 (4)
C8—C9—C10—C11−55.9 (5)C5—C26—C27—C28−179.1 (3)
C9—C10—C11—C1254.5 (5)C26—C27—C28—C29−2.1 (5)
C10—C11—C12—C13−55.3 (4)C27—C28—C29—C300.5 (5)
C11—C12—C13—C855.5 (4)C28—C29—C30—C310.9 (5)
C9—C8—C13—C12−55.1 (3)C27—C26—C31—C30−1.0 (4)
S1—C8—C13—C12−178.1 (2)C5—C26—C31—C30−179.6 (3)
C7—C6—C14—C19126.5 (3)C29—C30—C31—C26−0.6 (5)
N2—C6—C14—C19−52.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···N10.932.402.760 (4)103
C27—H27···S20.932.803.450 (4)128
C31—H31···N10.932.462.786 (4)101

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2138).

References

  • Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  • Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–166. [PubMed]
  • Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ.19, 572–576.
  • Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem.12, 2105–2108. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Londershausen, M. (1996). Pestic. Sci.48, 269–274.
  • Manikannan, R. (2008). PhD thesis, Madurai Kamaraj University, Madurai, India.
  • Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol.432, 107–119. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography