PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1442–m1443.
Published online 2008 October 18. doi:  10.1107/S1600536808032947
PMCID: PMC2959564

Poly[[diaqua­deca-μ-cyanido-hexa­cyanidobis­(4-cyano­pyridine)di-μ-pyrimidine-tricopper(II)ditungsten(V)] dihydrate]

Abstract

In the polymeric title compound, {[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O}n, the coordination geometry of W is an eight-coordinated bicapped trigonal prism. Five of the CN groups of [W(CN)8] are bridged to Cu ions. The coordination geometries of the Cu atoms are each pseudo-octa­hedral; one Cu atom is located on a centre of inversion. The cyano-bridged W–Cu layers are linked by Cu-containing pillars, to form a three-dimensional network with cavities occupied by noncoordinated water and 4-cyano­pyridine mol­ecules.

Related literature

For general background, see: Arimoto et al. (2003 [triangle]); Catala et al. (2005 [triangle]); Hozumi et al. (2003 [triangle]); Leipoldt et al. (1994 [triangle]); Ohkoshi et al. (2006 [triangle], 2008 [triangle]); Pilkington & Decurtins (2000 [triangle]); Zhong et al. (2000 [triangle]). For related structures, see: Garde et al. (1999 [triangle]); Ohkoshi et al. (2003 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1442-scheme1.jpg

Experimental

Crystal data

  • [Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O
  • M r = 1407.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1442-efi1.jpg
  • a = 7.2475 (6) Å
  • b = 15.4532 (12) Å
  • c = 20.8560 (16) Å
  • β = 90.057 (2)°
  • V = 2335.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.32 mm−1
  • T = 90 (2) K
  • 0.44 × 0.17 × 0.04 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (ABSCOR; Higashi, 1995 [triangle]) T min = 0.297, T max = 0.791
  • 22562 measured reflections
  • 5345 independent reflections
  • 4975 reflections with I > 2σ(I)
  • R int = 0.095

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.093
  • S = 1.09
  • 5345 reflections
  • 314 parameters
  • H-atom parameters constrained
  • Δρmax = 2.97 e Å−3
  • Δρmin = −1.45 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas & Rigaku, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PyMOLWin (DeLano, 2007 [triangle]); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032947/tk2308sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032947/tk2308Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported in part by a Grant for the Global COE Program, ‘Chemistry Innovation through Cooperation of Science and Engineering’, a Grant-in-Aid for Young Scientists (S) from the Japan Society for the Promotion of Science (JSPS), The Inamori Foundation, and The Kurata Memorial Hitachi Science and Technology Foundation.

supplementary crystallographic information

Comment

The preparation of ferromagnetic nanoporous materials is an attractive contemporary research area. An octacyanometalate [M(CN)8] (M = Mo, W, Nb)-based magnets are good candidates because of their high Curie temperatures (Garde et al., 1999; Zhong et al., 2000; Pilkington & Decurtins, 2000), functionalities such as photomagnetism (Arimoto et al., 2003; Catala et al., 2005; Ohkoshi et al., 2006,2008) and chemically sensitive magnetism (Ohkoshi et al., 2007). Octacyanometalates, [M(CN)8]n-, a versatile class of building blocks, can adopt different spatial configurations depending on the coordinating ligands, e.g., square antiprismic (D4h), dodecahedral (D2d), and bicapped trigonal prismic (C2v) (Leipoldt et al., 1994). In the case of Cu—W systems, several octacyanometalate-based magnets such as {[Cu3[W(CN)8]2]3.4H2O}n (3-dimensional network complex, 3-D) (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]8H2O}n (3-D) (Ohkoshi et al., 2007), {[Cu3[W(CN)8]2(3-cyanopyridine)6]4H2O}n (2-D array), and {[Cu3[W(CN)8]2(4-cyanopyridine)6]8H2O}n (2-D array) (Ohkoshi et al., 2003), have been reported.

The asymmetric unit of the present compound (I) comprises a [W(CN)8]3- anion, a one-half of [Cu1(H2O)2]2+ cation (the Cu centre is located on a centre of inversion), a [Cu2(pyrimidine)(4-cyanopyridine)]2+ cation, and a water molecule, Fig. 1. The coordination geometry of W is eight-coordinated bicapped trigonal prismic, where five CN groups of [W(CN)8] are bridged to Cu ions (one Cu1 and four Cu2), and the other three CN groups are free (Fig. 2a). The coordination geometries of the two types of CuII ions (Cu1 and Cu2) are pseudo-octahedral. The Cu1 atom is coordinated to two N atoms of CN ligands, two N atoms of pyrimidine molecules, and two O atoms of H2O molecules. The Cu2 atom is coordinated to four N atoms of CN ligands, one N atom of a pyrimidine molecule, and one N atom of a 4-cyanopyridine molecule.

The cyano-bridged-Cu2—W layers are linked by Cu1 pillar unit (Figs 2b and 2c). This arrangement leads to the formation of cavities along a axis which are occupied by 4-cyanopyridine molecules and zeolitic-like water molecules (Fig. 2b). The 4-cyanopyridine molecules are aligned alternately without forming significant intermolecular interaction, Fig. 2c.

The field-cooled magnetization (FCM) curve at 10 Oe showed a spontaneous magnetization with a Curie temperature (Tc) of 12 K, the coercive field (Hc) of 70 Oe at 2 K, and, the saturation magnetization (Ms) value of 3.1 µB. This Ms value indicates that this compound is a ferrimagnet in which WV (S = 1/2) and CuII (S = 1/2, Cu2) in the layer are ferromagnetically coupled and WV and the bridged CuII (S = 1/2, Cu1) are antiferromagnetically coupled.

Experimental

The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl2.2H2O (1.8 × 10 -2 mol dm-3), 4-cyanopyridine (1.8 × 10 -2 mol dm-3) and pyrimidine (1.2 × 10 -2 mol dm-3) at room temperature. The prepared compound was a green plate-like crystal. Elemental analysis found: C 30.36, H 1.88, N 23.99, Cu 13.84, W 26.20; C36H24N24O4Cu3W2 requires: Cu, 13.47; W, 25.98; C, 30.56; H, 1.71; N, 23.76.

In the IR spectrum, cyano stretching peaks were observed at 2154, 2162, 2170, and 2200 cm-1. The UV-visible reflectance spectrum showed absorption bands at around 700 and 1070 nm.

Refinement

The H atoms of the solvent water molecules and the coordinated water molecules could not be located reliably and were not included in the refinement. The remaining H atoms were placed in calculated positions and refined using a riding model, with C-H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C). The maximum and minimum residual electron density peaks were located 0.66 and 1.61 Å, respectively from the W atom.

Figures

Fig. 1.
Displacement ellipsoid plot (50% probability level) of (I) showing the asymmetric unit. Hydrogen atoms are omitted for clarity.
Fig. 2.
Supramolecular connectivity in (I) where hydrogen atoms are omitted for clarity. (a) The coordination environment around the W and Cu atoms. The broken lines indicate coordination to symmetry-related metal ions. (b) View along the a axis, the direction ...

Crystal data

[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2OF(000) = 1334
Mr = 1407.02Dx = 2.000 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 15466 reflections
a = 7.2475 (6) Åθ = 3.1–27.5°
b = 15.4532 (12) ŵ = 6.32 mm1
c = 20.8560 (16) ÅT = 90 K
β = 90.057 (2)°Plate, green
V = 2335.8 (3) Å30.44 × 0.17 × 0.04 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer5345 independent reflections
Radiation source: sealed tube4975 reflections with I > 2σ(I)
sealed tubeRint = 0.095
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −9→9
Absorption correction: numerical (ABSCOR; Higashi, 1995)k = −20→17
Tmin = 0.297, Tmax = 0.791l = −27→26
22562 measured reflections

Refinement

Refinement on F20 constraints
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + 6.8782P] where P = (Fo2 + 2Fc2)/3
5345 reflections(Δ/σ)max = 0.002
314 parametersΔρmax = 2.97 e Å3
0 restraintsΔρmin = −1.45 e Å3

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
W(1)0.79222 (2)0.682386 (11)0.301091 (8)0.00933 (7)
Cu(1)0.50000.50000.50000.01726 (18)
Cu(2)0.24342 (7)0.43738 (4)0.23347 (3)0.01074 (13)
O(1)0.6198 (4)0.3863 (2)0.50585 (15)0.0199 (7)
O(2W)0.4469 (5)0.2609 (2)0.44669 (18)0.0331 (9)
N(8)0.4520 (5)0.8223 (2)0.2839 (2)0.0171 (8)
N(5)0.7372 (8)0.7918 (4)0.4362 (2)0.0445 (14)
N(4)1.1739 (5)0.6555 (3)0.3867 (2)0.0221 (9)
N(6)1.0499 (5)0.8542 (2)0.27039 (19)0.0155 (8)
N(3P)0.2076 (5)0.4190 (2)0.33127 (19)0.0139 (7)
N(3)1.0395 (5)0.5230 (2)0.24087 (18)0.0146 (8)
N(7)0.7775 (6)0.7133 (3)0.1440 (2)0.0251 (9)
N(1P)0.3037 (5)0.4489 (2)0.43733 (19)0.0167 (8)
N(1C)0.2581 (5)0.4584 (2)0.13674 (18)0.0160 (8)
N(2)0.4536 (5)0.5548 (2)0.25142 (19)0.0159 (8)
N(8C)0.2655 (15)0.5073 (7)−0.1191 (3)0.108 (3)
N(1)0.6858 (5)0.5382 (3)0.41107 (19)0.0195 (9)
C(5)0.7573 (7)0.7547 (3)0.3890 (2)0.0247 (11)
C(8)0.5679 (6)0.7718 (3)0.2897 (2)0.0131 (8)
C(6)0.9565 (6)0.7950 (3)0.2801 (2)0.0149 (9)
C(1)0.7250 (6)0.5869 (3)0.3723 (2)0.0151 (9)
C(3)0.9483 (5)0.5780 (3)0.2595 (2)0.0117 (8)
C(2)0.5694 (6)0.6008 (3)0.2667 (2)0.0139 (9)
C(7)0.7801 (6)0.7033 (3)0.1982 (2)0.0147 (9)
C(4)1.0445 (6)0.6656 (3)0.3562 (2)0.0145 (9)
C(4P)0.0484 (6)0.3870 (3)0.3537 (2)0.0208 (10)
C(5P)0.0114 (6)0.3841 (4)0.4186 (2)0.0250 (11)
C(2P)0.3299 (6)0.4475 (3)0.3738 (2)0.0158 (9)
C(6C)0.2623 (8)0.5390 (3)0.1143 (2)0.0286 (12)
C(5C)0.2606 (10)0.5585 (4)0.0505 (3)0.0468 (19)
C(4C)0.2565 (9)0.4902 (6)0.0079 (3)0.052 (2)
C(3C)0.2549 (8)0.4065 (5)0.0295 (2)0.0412 (17)
C(2C)0.2567 (7)0.3938 (3)0.0953 (2)0.0252 (11)
C(6P)0.1443 (6)0.4167 (4)0.4596 (2)0.0238 (11)
C(7C)0.2648 (14)0.4950 (8)−0.0622 (4)0.083 (3)
H(4P)−0.04150.36570.32390.025*
H(5P)−0.10170.36050.43460.030*
H(2P)0.44510.46830.35790.019*
H(6C)0.26640.58590.14490.035*
H(5C)0.26180.61780.03580.056*
H(3C)0.25210.3584−0.00000.050*
H(2C)0.25670.33550.11170.031*
H(6P)0.12220.41650.50500.028*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W(1)0.00709 (11)0.00851 (13)0.01238 (11)−0.00006 (5)−0.00063 (7)0.00014 (6)
Cu(1)0.0109 (3)0.0285 (5)0.0123 (3)−0.0043 (3)−0.0029 (2)0.0043 (3)
Cu(2)0.0096 (2)0.0105 (2)0.0121 (2)0.00227 (19)−0.00008 (18)0.0000 (2)
O(1)0.0141 (16)0.029 (2)0.0161 (15)−0.0006 (13)−0.0023 (11)0.0056 (15)
O(2W)0.029 (2)0.040 (2)0.030 (2)−0.0009 (17)0.0017 (16)−0.015 (2)
N(8)0.016 (2)0.015 (2)0.020 (2)0.0002 (14)0.0004 (15)0.0026 (16)
N(5)0.056 (3)0.049 (3)0.029 (2)0.017 (2)−0.008 (2)−0.020 (2)
N(4)0.019 (2)0.022 (2)0.025 (2)−0.0013 (17)−0.0066 (16)0.005 (2)
N(6)0.0106 (18)0.015 (2)0.021 (2)−0.0015 (15)−0.0004 (14)0.0014 (17)
N(3P)0.0123 (18)0.013 (2)0.0160 (18)0.0003 (14)0.0009 (13)0.0001 (16)
N(3)0.0109 (18)0.015 (2)0.0175 (18)0.0003 (15)0.0000 (13)0.0012 (16)
N(7)0.029 (2)0.026 (2)0.021 (2)0.0002 (19)0.0035 (16)0.006 (2)
N(1P)0.0151 (19)0.018 (2)0.0169 (19)−0.0028 (15)−0.0023 (14)0.0050 (17)
N(1C)0.0145 (19)0.022 (2)0.0113 (18)−0.0018 (15)0.0007 (13)0.0037 (17)
N(2)0.0154 (19)0.016 (2)0.0160 (18)−0.0005 (15)−0.0012 (14)−0.0003 (16)
N(8C)0.145 (9)0.136 (10)0.043 (4)−0.015 (7)−0.005 (4)−0.003 (5)
N(1)0.016 (2)0.026 (2)0.0161 (19)−0.0067 (16)−0.0049 (14)0.0059 (19)
C(5)0.025 (2)0.023 (2)0.027 (2)0.004 (2)−0.0081 (19)−0.001 (2)
C(8)0.012 (2)0.012 (2)0.015 (2)0.0016 (16)−0.0008 (15)−0.0019 (18)
C(6)0.010 (2)0.016 (2)0.018 (2)0.0041 (18)−0.0037 (15)0.004 (2)
C(1)0.012 (2)0.021 (2)0.013 (2)−0.0017 (17)−0.0036 (15)−0.003 (2)
C(3)0.011 (2)0.014 (2)0.0102 (19)−0.0022 (17)−0.0015 (14)−0.0006 (18)
C(2)0.011 (2)0.012 (2)0.018 (2)−0.0003 (17)−0.0018 (15)0.0016 (19)
C(7)0.011 (2)0.014 (2)0.019 (2)−0.0024 (17)0.0012 (15)0.003 (2)
C(4)0.014 (2)0.013 (2)0.017 (2)−0.0028 (17)−0.0022 (16)0.0022 (19)
C(4P)0.013 (2)0.028 (2)0.022 (2)−0.0076 (19)−0.0006 (17)−0.002 (2)
C(5P)0.016 (2)0.039 (3)0.020 (2)−0.007 (2)0.0037 (17)0.002 (2)
C(2P)0.012 (2)0.017 (2)0.018 (2)0.0001 (17)0.0005 (16)−0.0006 (19)
C(6C)0.042 (3)0.024 (2)0.020 (2)−0.012 (2)−0.007 (2)0.010 (2)
C(5C)0.061 (4)0.047 (4)0.032 (3)−0.032 (3)−0.018 (2)0.028 (3)
C(4C)0.032 (3)0.100 (6)0.024 (3)−0.024 (3)−0.008 (2)0.028 (3)
C(3C)0.034 (3)0.070 (5)0.020 (2)−0.001 (3)0.005 (2)−0.012 (3)
C(2C)0.027 (2)0.029 (3)0.020 (2)0.004 (2)0.0005 (19)−0.003 (2)
C(6P)0.014 (2)0.041 (3)0.016 (2)−0.004 (2)0.0004 (17)0.003 (2)
C(7C)0.086 (7)0.110 (9)0.054 (5)−0.016 (6)0.010 (4)0.005 (5)

Geometric parameters (Å, °)

W(1)—C(5)2.162 (5)N(3P)—C(2P)1.328 (6)
W(1)—C(8)2.146 (4)N(3)—C(3)1.145 (6)
W(1)—C(6)2.153 (4)N(7)—C(7)1.141 (6)
W(1)—C(1)2.149 (4)N(1P)—C(2P)1.339 (6)
W(1)—C(3)2.153 (4)N(1P)—C(6P)1.341 (6)
W(1)—C(2)2.170 (4)N(1C)—C(6C)1.331 (7)
W(1)—C(7)2.173 (4)N(1C)—C(2C)1.322 (6)
W(1)—C(4)2.174 (4)N(2)—C(2)1.145 (6)
Cu(1)—O(1)1.964 (3)N(8C)—C(7C)1.202 (12)
Cu(1)—O(1)i1.964 (3)N(1)—C(1)1.141 (6)
Cu(1)—N(1P)2.086 (3)C(4P)—C(5P)1.381 (6)
Cu(1)—N(1P)i2.086 (3)C(5P)—C(6P)1.383 (7)
Cu(1)—N(1)2.368 (3)C(6C)—C(5C)1.364 (8)
Cu(1)—N(1)i2.368 (3)C(5C)—C(4C)1.380 (11)
Cu(2)—N(8)ii2.301 (4)C(4C)—C(3C)1.368 (12)
Cu(2)—N(6)iii1.975 (3)C(4C)—C(7C)1.465 (11)
Cu(2)—N(3P)2.076 (4)C(3C)—C(2C)1.386 (7)
Cu(2)—N(3)iv1.990 (3)C(4P)—H(4P)0.958
Cu(2)—N(1C)2.046 (3)C(5P)—H(5P)0.958
Cu(2)—N(2)2.399 (4)C(2P)—H(2P)0.955
N(8)—C(8)1.154 (6)C(6C)—H(6C)0.965
N(5)—C(5)1.149 (7)C(5C)—H(5C)0.967
N(4)—C(4)1.143 (6)C(3C)—H(3C)0.965
N(6)—C(6)1.157 (6)C(2C)—H(2C)0.964
N(3P)—C(4P)1.340 (6)C(6P)—H(6P)0.960
O(1)···O(2W)2.615 (5)N(8C)···C(3)vii3.564 (10)
O(1)···N(4)v2.770 (5)N(8C)···C(6C)vii3.498 (12)
O(2W)···O(1)2.615 (5)C(3)···N(8C)vii3.564 (10)
O(2W)···N(5)i2.901 (6)C(2P)···O(2W)3.367 (6)
O(2W)···N(7)iii2.849 (5)C(6C)···N(8C)vii3.498 (12)
O(2W)···N(1P)3.090 (6)C(5C)···O(2W)x3.472 (8)
O(2W)···C(2P)3.367 (6)C(5C)···N(5)ix3.326 (9)
O(2W)···C(5C)ii3.472 (8)C(5C)···C(7C)vii3.546 (13)
O(2W)···C(6P)3.268 (7)C(4C)···C(4C)vii3.559 (9)
N(5)···O(2W)i2.901 (6)C(6P)···O(2W)3.268 (7)
N(5)···N(8C)vi3.318 (13)C(7C)···N(5)ix3.301 (14)
N(5)···C(5C)vi3.326 (9)C(7C)···C(5C)vii3.546 (13)
N(5)···C(7C)vi3.301 (14)O(2W)···H(5C)ii2.705
N(4)···O(1)v2.770 (5)O(2W)···H(3C)xi3.087
N(3)···N(8C)vii3.398 (10)O(2W)···H(6P)3.578
N(7)···O(2W)viii2.849 (5)N(5)···H(5C)vi2.510
N(7)···N(8C)vii3.462 (13)N(7)···H(3C)vii3.207
N(1P)···O(2W)3.090 (6)C(6P)···H(6P)xii3.304
N(1C)···N(8C)vii3.513 (11)H(5C)···O(2W)x2.705
N(2)···N(8C)vii3.563 (10)H(5C)···N(5)ix2.510
N(8C)···N(5)ix3.318 (13)H(3C)···O(2W)xiii3.087
N(8C)···N(3)vii3.398 (10)H(3C)···N(7)vii3.207
N(8C)···N(7)vii3.462 (13)H(6P)···O(2W)3.578
N(8C)···N(1C)vii3.513 (11)H(6P)···C(6P)xii3.304
N(8C)···N(2)vii3.563 (10)H(6P)···H(6P)xii3.136
C(5)—W(1)—C(8)70.83 (18)N(3P)—Cu(2)—N(2)91.72 (14)
C(5)—W(1)—C(6)79.62 (19)N(3)iv—Cu(2)—N(1C)90.59 (16)
C(5)—W(1)—C(1)75.05 (19)N(3)iv—Cu(2)—N(2)87.51 (14)
C(5)—W(1)—C(3)142.29 (18)N(1C)—Cu(2)—N(2)90.00 (15)
C(5)—W(1)—C(2)119.52 (18)Cu(2)x—N(8)—C(8)171.0 (3)
C(5)—W(1)—C(7)139.15 (19)Cu(2)viii—N(6)—C(6)165.0 (3)
C(5)—W(1)—C(4)73.28 (18)Cu(2)—N(3P)—C(4P)120.1 (3)
C(8)—W(1)—C(6)82.92 (17)Cu(2)—N(3P)—C(2P)121.8 (3)
C(8)—W(1)—C(1)110.23 (17)C(4P)—N(3P)—C(2P)117.6 (4)
C(8)—W(1)—C(3)146.68 (16)Cu(2)xiv—N(3)—C(3)161.7 (3)
C(8)—W(1)—C(2)76.94 (17)Cu(1)—N(1P)—C(2P)121.9 (3)
C(8)—W(1)—C(7)76.43 (17)Cu(1)—N(1P)—C(6P)120.7 (3)
C(8)—W(1)—C(4)140.49 (17)C(2P)—N(1P)—C(6P)117.4 (4)
C(6)—W(1)—C(1)145.12 (17)Cu(2)—N(1C)—C(6C)119.7 (3)
C(6)—W(1)—C(3)103.42 (17)Cu(2)—N(1C)—C(2C)121.7 (3)
C(6)—W(1)—C(2)144.47 (17)C(6C)—N(1C)—C(2C)118.5 (4)
C(6)—W(1)—C(7)72.62 (17)Cu(2)—N(2)—C(2)168.1 (3)
C(6)—W(1)—C(4)74.85 (17)Cu(1)—N(1)—C(1)149.5 (3)
C(1)—W(1)—C(3)83.36 (17)W(1)—C(5)—N(5)178.7 (5)
C(1)—W(1)—C(2)70.17 (17)W(1)—C(8)—N(8)177.4 (4)
C(1)—W(1)—C(7)140.87 (18)W(1)—C(6)—N(6)177.4 (3)
C(1)—W(1)—C(4)75.16 (17)W(1)—C(1)—N(1)177.8 (4)
C(3)—W(1)—C(2)79.79 (16)W(1)—C(3)—N(3)175.2 (3)
C(3)—W(1)—C(7)74.54 (17)W(1)—C(2)—N(2)176.2 (4)
C(3)—W(1)—C(4)71.47 (16)W(1)—C(7)—N(7)178.4 (4)
C(2)—W(1)—C(7)74.36 (17)W(1)—C(4)—N(4)177.8 (4)
C(2)—W(1)—C(4)136.94 (17)N(3P)—C(4P)—C(5P)121.5 (4)
C(7)—W(1)—C(4)124.99 (16)C(4P)—C(5P)—C(6P)117.4 (4)
O(1)—Cu(1)—O(1)i180.00 (18)N(3P)—C(2P)—N(1P)124.8 (4)
O(1)—Cu(1)—N(1P)90.05 (15)N(1C)—C(6C)—C(5C)123.3 (5)
O(1)—Cu(1)—N(1P)i89.95 (15)C(6C)—C(5C)—C(4C)117.4 (6)
O(1)—Cu(1)—N(1)91.15 (14)C(5C)—C(4C)—C(3C)120.7 (6)
O(1)—Cu(1)—N(1)i88.85 (14)C(5C)—C(4C)—C(7C)127.1 (8)
O(1)i—Cu(1)—N(1P)89.95 (15)C(3C)—C(4C)—C(7C)112.1 (8)
O(1)i—Cu(1)—N(1P)i90.05 (15)C(4C)—C(3C)—C(2C)117.3 (6)
O(1)i—Cu(1)—N(1)88.85 (14)N(1C)—C(2C)—C(3C)122.7 (5)
O(1)i—Cu(1)—N(1)i91.15 (14)N(1P)—C(6P)—C(5P)121.3 (4)
N(1P)—Cu(1)—N(1P)i180.0 (2)N(8C)—C(7C)—C(4C)173.5 (12)
N(1P)—Cu(1)—N(1)89.52 (14)N(3P)—C(4P)—H(4P)119.1
N(1P)—Cu(1)—N(1)i90.48 (14)C(5P)—C(4P)—H(4P)119.5
N(1P)i—Cu(1)—N(1)90.48 (14)C(4P)—C(5P)—H(5P)121.4
N(1P)i—Cu(1)—N(1)i89.52 (14)C(6P)—C(5P)—H(5P)121.2
N(1)—Cu(1)—N(1)i180.0 (2)N(3P)—C(2P)—H(2P)117.6
N(8)ii—Cu(2)—N(6)iii87.57 (15)N(1P)—C(2P)—H(2P)117.6
N(8)ii—Cu(2)—N(3P)88.40 (15)N(1C)—C(6C)—H(6C)118.1
N(8)ii—Cu(2)—N(3)iv93.94 (15)C(5C)—C(6C)—H(6C)118.6
N(8)ii—Cu(2)—N(1C)89.99 (15)C(6C)—C(5C)—H(5C)121.2
N(8)ii—Cu(2)—N(2)178.55 (14)C(4C)—C(5C)—H(5C)121.4
N(6)iii—Cu(2)—N(3P)92.69 (15)C(4C)—C(3C)—H(3C)121.2
N(6)iii—Cu(2)—N(3)iv177.57 (16)C(2C)—C(3C)—H(3C)121.5
N(6)iii—Cu(2)—N(1C)91.31 (16)N(1C)—C(2C)—H(2C)118.3
N(6)iii—Cu(2)—N(2)90.98 (15)C(3C)—C(2C)—H(2C)119.0
N(3P)—Cu(2)—N(3)iv85.46 (15)N(1P)—C(6P)—H(6P)119.2
N(3P)—Cu(2)—N(1C)175.62 (15)C(5P)—C(6P)—H(6P)119.5
C(5)—W(1)—C(8)—N(8)63 (8)N(1P)i—Cu(1)—N(1)—C(1)−91.9 (7)
C(8)—W(1)—C(5)—N(5)105 (22)N(1)—Cu(1)—N(1P)i—C(2P)i177.7 (3)
C(5)—W(1)—C(6)—N(6)75 (9)N(1)—Cu(1)—N(1P)i—C(6P)i−3.0 (4)
C(6)—W(1)—C(5)—N(5)−169 (18)N(1P)i—Cu(1)—N(1)i—C(1)i−88.1 (7)
C(5)—W(1)—C(1)—N(1)34 (10)N(1)i—Cu(1)—N(1P)i—C(2P)i−2.3 (3)
C(1)—W(1)—C(5)—N(5)−13 (21)N(1)i—Cu(1)—N(1P)i—C(6P)i177.0 (4)
C(5)—W(1)—C(3)—N(3)−14 (4)N(8)ii—Cu(2)—N(6)iii—C(6)iii22.8 (14)
C(3)—W(1)—C(5)—N(5)−70 (22)N(6)iii—Cu(2)—N(8)ii—C(8)ii162 (2)
C(5)—W(1)—C(2)—N(2)−68 (6)N(8)ii—Cu(2)—N(3P)—C(4P)−30.3 (3)
C(2)—W(1)—C(5)—N(5)43 (22)N(8)ii—Cu(2)—N(3P)—C(2P)157.6 (3)
C(5)—W(1)—C(7)—N(7)132 (16)N(3P)—Cu(2)—N(8)ii—C(8)ii70 (2)
C(7)—W(1)—C(5)—N(5)144 (22)N(8)ii—Cu(2)—N(3)iv—C(3)iv131.3 (12)
C(5)—W(1)—C(4)—N(4)64 (11)N(3)iv—Cu(2)—N(8)ii—C(8)ii−16 (2)
C(4)—W(1)—C(5)—N(5)−92 (22)N(8)ii—Cu(2)—N(1C)—C(6C)141.8 (4)
C(8)—W(1)—C(6)—N(6)147 (9)N(8)ii—Cu(2)—N(1C)—C(2C)−35.7 (3)
C(6)—W(1)—C(8)—N(8)−19 (8)N(1C)—Cu(2)—N(8)ii—C(8)ii−106 (2)
C(8)—W(1)—C(1)—N(1)−29 (10)N(8)ii—Cu(2)—N(2)—C(2)−42 (6)
C(1)—W(1)—C(8)—N(8)128 (8)N(2)—Cu(2)—N(8)ii—C(8)ii164 (4)
C(8)—W(1)—C(3)—N(3)174 (4)N(6)iii—Cu(2)—N(3P)—C(4P)−117.8 (4)
C(3)—W(1)—C(8)—N(8)−123 (8)N(6)iii—Cu(2)—N(3P)—C(2P)70.2 (3)
C(8)—W(1)—C(2)—N(2)−127 (6)N(3P)—Cu(2)—N(6)iii—C(6)iii111.1 (14)
C(2)—W(1)—C(8)—N(8)−169 (8)N(6)iii—Cu(2)—N(3)iv—C(3)iv3(4)
C(8)—W(1)—C(7)—N(7)169 (16)N(3)iv—Cu(2)—N(6)iii—C(6)iii151 (3)
C(7)—W(1)—C(8)—N(8)−93 (8)N(6)iii—Cu(2)—N(1C)—C(6C)−130.7 (4)
C(8)—W(1)—C(4)—N(4)89 (11)N(6)iii—Cu(2)—N(1C)—C(2C)51.9 (3)
C(4)—W(1)—C(8)—N(8)37 (8)N(1C)—Cu(2)—N(6)iii—C(6)iii−67.1 (14)
C(6)—W(1)—C(1)—N(1)78 (10)N(6)iii—Cu(2)—N(2)—C(2)−40.2 (17)
C(1)—W(1)—C(6)—N(6)31 (9)N(2)—Cu(2)—N(6)iii—C(6)iii−157.2 (14)
C(6)—W(1)—C(3)—N(3)76 (4)N(3P)—Cu(2)—N(3)iv—C(3)iv43.2 (12)
C(3)—W(1)—C(6)—N(6)−66 (9)N(3)iv—Cu(2)—N(3P)—C(4P)63.8 (3)
C(6)—W(1)—C(2)—N(2)176 (5)N(3)iv—Cu(2)—N(3P)—C(2P)−108.3 (3)
C(2)—W(1)—C(6)—N(6)−158 (9)N(3P)—Cu(2)—N(1C)—C(6C)73 (2)
C(6)—W(1)—C(7)—N(7)82 (16)N(3P)—Cu(2)—N(1C)—C(2C)−104 (2)
C(7)—W(1)—C(6)—N(6)−135 (9)N(1C)—Cu(2)—N(3P)—C(4P)38 (2)
C(6)—W(1)—C(4)—N(4)147 (11)N(1C)—Cu(2)—N(3P)—C(2P)−134 (2)
C(4)—W(1)—C(6)—N(6)−0(8)N(3P)—Cu(2)—N(2)—C(2)52.5 (17)
C(1)—W(1)—C(3)—N(3)−69 (4)N(2)—Cu(2)—N(3P)—C(4P)151.1 (3)
C(3)—W(1)—C(1)—N(1)−178 (9)N(2)—Cu(2)—N(3P)—C(2P)−20.9 (3)
C(1)—W(1)—C(2)—N(2)−10 (6)N(3)iv—Cu(2)—N(1C)—C(6C)47.8 (4)
C(2)—W(1)—C(1)—N(1)−96 (10)N(3)iv—Cu(2)—N(1C)—C(2C)−129.6 (3)
C(1)—W(1)—C(7)—N(7)−86 (16)N(1C)—Cu(2)—N(3)iv—C(3)iv−138.7 (12)
C(7)—W(1)—C(1)—N(1)−122 (10)N(3)iv—Cu(2)—N(2)—C(2)137.8 (17)
C(1)—W(1)—C(4)—N(4)−15 (11)N(2)—Cu(2)—N(3)iv—C(3)iv−48.7 (12)
C(4)—W(1)—C(1)—N(1)110 (10)N(1C)—Cu(2)—N(2)—C(2)−131.6 (17)
C(3)—W(1)—C(2)—N(2)77 (6)N(2)—Cu(2)—N(1C)—C(6C)−39.7 (3)
C(2)—W(1)—C(3)—N(3)−140 (4)N(2)—Cu(2)—N(1C)—C(2C)142.9 (3)
C(3)—W(1)—C(7)—N(7)−28 (16)Cu(2)x—N(8)—C(8)—W(1)29 (10)
C(7)—W(1)—C(3)—N(3)144 (4)Cu(2)viii—N(6)—C(6)—W(1)8(10)
C(3)—W(1)—C(4)—N(4)−103 (11)Cu(2)—N(3P)—C(4P)—C(5P)−171.8 (4)
C(4)—W(1)—C(3)—N(3)8(4)Cu(2)—N(3P)—C(2P)—N(1P)170.1 (3)
C(2)—W(1)—C(7)—N(7)−111 (16)C(4P)—N(3P)—C(2P)—N(1P)−2.1 (7)
C(7)—W(1)—C(2)—N(2)154 (6)C(2P)—N(3P)—C(4P)—C(5P)0.6 (7)
C(2)—W(1)—C(4)—N(4)−52 (11)Cu(2)xiv—N(3)—C(3)—W(1)−3(5)
C(4)—W(1)—C(2)—N(2)29 (6)Cu(1)—N(1P)—C(2P)—N(3P)−177.2 (3)
C(7)—W(1)—C(4)—N(4)−157 (11)Cu(1)—N(1P)—C(6P)—C(5P)178.7 (4)
C(4)—W(1)—C(7)—N(7)26 (16)C(2P)—N(1P)—C(6P)—C(5P)−0.6 (8)
O(1)—Cu(1)—N(1P)—C(2P)−88.9 (3)C(6P)—N(1P)—C(2P)—N(3P)2.1 (7)
O(1)—Cu(1)—N(1P)—C(6P)91.8 (4)Cu(2)—N(1C)—C(6C)—C(5C)−175.8 (5)
O(1)—Cu(1)—N(1P)i—C(2P)i−91.1 (3)Cu(2)—N(1C)—C(2C)—C(3C)175.9 (4)
O(1)—Cu(1)—N(1P)i—C(6P)i88.2 (4)C(6C)—N(1C)—C(2C)—C(3C)−1.6 (7)
O(1)—Cu(1)—N(1)—C(1)178.2 (7)C(2C)—N(1C)—C(6C)—C(5C)1.7 (8)
O(1)—Cu(1)—N(1)i—C(1)i1.8 (7)Cu(2)—N(2)—C(2)—W(1)−20 (7)
O(1)i—Cu(1)—N(1P)—C(2P)91.1 (3)Cu(1)—N(1)—C(1)—W(1)9(10)
O(1)i—Cu(1)—N(1P)—C(6P)−88.2 (4)N(3P)—C(4P)—C(5P)—C(6P)0.8 (8)
O(1)i—Cu(1)—N(1P)i—C(2P)i88.9 (3)C(4P)—C(5P)—C(6P)—N(1P)−0.7 (8)
O(1)i—Cu(1)—N(1P)i—C(6P)i−91.8 (4)N(1C)—C(6C)—C(5C)—C(4C)−0.8 (9)
O(1)i—Cu(1)—N(1)—C(1)−1.8 (7)C(6C)—C(5C)—C(4C)—C(3C)−0.3 (7)
O(1)i—Cu(1)—N(1)i—C(1)i−178.2 (7)C(6C)—C(5C)—C(4C)—C(7C)−176.1 (7)
N(1P)—Cu(1)—N(1)—C(1)88.1 (7)C(5C)—C(4C)—C(3C)—C(2C)0.3 (7)
N(1)—Cu(1)—N(1P)—C(2P)2.3 (3)C(5C)—C(4C)—C(7C)—N(8C)−22 (10)
N(1)—Cu(1)—N(1P)—C(6P)−177.0 (4)C(3C)—C(4C)—C(7C)—N(8C)161 (9)
N(1P)—Cu(1)—N(1)i—C(1)i91.9 (7)C(7C)—C(4C)—C(3C)—C(2C)176.8 (6)
N(1)i—Cu(1)—N(1P)—C(2P)−177.7 (3)C(4C)—C(3C)—C(2C)—N(1C)0.6 (8)
N(1)i—Cu(1)—N(1P)—C(6P)3.0 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1, y, z; (v) −x+2, −y+1, −z+1; (vi) x+1/2, −y+3/2, z+1/2; (vii) −x+1, −y+1, −z; (viii) −x+3/2, y+1/2, −z+1/2; (ix) x−1/2, −y+3/2, z−1/2; (x) −x+1/2, y+1/2, −z+1/2; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x, −y+1, −z+1; (xiii) x−1/2, −y+1/2, z−1/2; (xiv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2308).

References

  • Arimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Am. Chem. Soc.125, 9240–9241. [PubMed]
  • Catala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748. [PubMed]
  • DeLano, W. L. (2007). The pyMOL Molecular Graphics System DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pymol.org.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Garde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst.334, 587–595.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hozumi, T., Ohkoshi, S., Arimoto, Y., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Phys. Chem. B, 107, 11571–11574.
  • Leipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem.40, 241–322.
  • Ohkoshi, S., Arimoto, Y., Hozumi, T., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). Chem. Commun. pp. 2772–2773. [PubMed]
  • Ohkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater.20, 3048–3054.
  • Ohkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. (2006). J. Am. Chem. Soc.128, 5320–5321. [PubMed]
  • Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc.129, 3084–3085. [PubMed]
  • Pilkington, M. & Decurtins, S. (2000). Chimia (Aarau), 54, 593–601.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku Americas & Rigaku (2007). CrystalStructure Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem.39, 5095–5101. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography