PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1422.
Published online 2008 October 18. doi:  10.1107/S1600536808033102
PMCID: PMC2959557

Bis{(E)-2-meth­oxy-6-[(4-methyl­phen­yl)­imino­meth­yl]phenolato}zinc(II)

Abstract

The title compound, [Zn(C15H14NO2)2], contains a four-coordinate Zn atom located on a twofold rotation axis that exhibits a distorted tetra­hedral geometry by two phenolate O atoms and two azomethine N atoms of the Schiff base 2-methoxy-6-[(4-methyl­phen­yl)imino­meth­yl]phenolate ligands.

Related literature

For related literature, see: Bhattacharyya et al. (2002 [triangle]); Iyere et al. (2004 [triangle]); Müller et al. (2001 [triangle]); Yu et al. (2007 [triangle]); Zhou & Zhao (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1422-scheme1.jpg

Experimental

Crystal data

  • [Zn(C15H14NO2)2]
  • M r = 545.93
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1422-efi1.jpg
  • a = 14.0698 (4) Å
  • b = 16.3828 (5) Å
  • c = 12.0532 (3) Å
  • β = 107.5880 (10)°
  • V = 2648.42 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 296 (2) K
  • 0.52 × 0.08 × 0.08 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.914, T max = 0.930
  • 10967 measured reflections
  • 3013 independent reflections
  • 2523 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.096
  • S = 1.03
  • 3013 reflections
  • 168 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033102/at2636sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033102/at2636Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base ligands derived from substituted salicylaldehyde and aniline and their metal complexes have been widely investigated because of their novel structural features (Müller et al., 2001; Bhattacharyya et al., 2002). They include complexes with a methoxy group in the ortho position as the methoxy group can also bind to the metal. Such Schiff bases behave as bidentate ligands to divalent first-row transition metals (Zhou & Zhao, 2007). Similar cobalt (II) complexes have been reported by Iyere et al. (2004). Here, we describe the synthesis and crystal structure of a zinc complex, (I), of a Schiff base derived from o-vanillin and p-toluidine.

The structural features of the (I) dimer shown in Fig.ure 1. The Zn atom sits on a twofold axis. The tridentate ligands coordinate to the Zinc ion through the phenolic hydroxy O atom and the azomethine N atom, forming a distorted tetrahedral geometry around the metal ion. It is different from the complex [ZnL2(NO3)2] (Yu et al., 2007) in which Zn is coordinated by the methoxy O atom and the azomethine N atom.

Experimental

The ligand was prepared by the direct solid-phase reaction of o-vanillin (10 mmol, 1.5251 g) and p-toluidine (10 mmol, 1.0700 g). The reactants were ground in an agate mortar. The colour of the mixture changed from light yellow to orange. A solution of Zn(C2O4) (1 mmol, 0.153 g) in methanol (10 ml) was added to a methanol solution of the Schiff base ligand (2 mmol, 0.48 g). orange crystals were isolated after two weeks.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.96 Å, aliphatic C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Zn(C15H14NO2)2]F(000) = 1136
Mr = 545.93Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4200 reflections
a = 14.0698 (4) Åθ = 2.0–27.5°
b = 16.3828 (5) ŵ = 0.97 mm1
c = 12.0532 (3) ÅT = 296 K
β = 107.588 (1)°Prism, orange
V = 2648.42 (13) Å30.52 × 0.08 × 0.08 mm
Z = 4

Data collection

Bruker APEXII diffractometer3013 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→18
Tmin = 0.914, Tmax = 0.930k = −16→21
10967 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0548P)2 + 1.3911P] where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.00000.029267 (18)0.25000.03242 (12)
N10.04480 (11)0.08214 (9)0.12438 (13)0.0314 (3)
O10.26186 (12)−0.13463 (10)0.42256 (14)0.0539 (4)
O20.11926 (10)−0.03384 (8)0.31639 (12)0.0386 (3)
C1−0.1868 (3)0.3361 (2)−0.1614 (3)0.0881 (10)
H1A−0.17850.3347−0.23760.132*
H1B−0.16410.3876−0.12530.132*
H1C−0.25610.3291−0.16800.132*
C2−0.12681 (17)0.26797 (15)−0.0881 (2)0.0526 (6)
C3−0.07130 (16)0.21486 (15)−0.13218 (19)0.0479 (5)
H3A−0.07190.2207−0.20910.058*
C4−0.01499 (15)0.15341 (13)−0.06598 (17)0.0393 (5)
H4A0.02200.1188−0.09820.047*
C5−0.01341 (13)0.14317 (11)0.04915 (16)0.0326 (4)
C6−0.07168 (16)0.19465 (15)0.09294 (19)0.0481 (5)
H6A−0.07400.18740.16860.058*
C7−0.12619 (19)0.25644 (17)0.0254 (2)0.0587 (6)
H7A−0.16340.29120.05710.070*
C80.12692 (13)0.05742 (13)0.10587 (17)0.0344 (4)
H8A0.14110.08070.04230.041*
C90.19768 (14)−0.00060 (13)0.17051 (17)0.0340 (4)
C100.28175 (17)−0.01304 (15)0.1298 (2)0.0492 (6)
H10A0.28470.01370.06290.059*
C110.35710 (17)−0.06289 (18)0.1865 (2)0.0611 (7)
H11A0.4118−0.06950.15930.073*
C120.35297 (16)−0.10458 (16)0.2861 (2)0.0541 (6)
H12A0.4050−0.13900.32480.065*
C130.27268 (15)−0.09502 (13)0.32723 (18)0.0411 (5)
C140.19242 (13)−0.04184 (11)0.27139 (17)0.0321 (4)
C150.3448 (2)−0.1804 (2)0.4906 (3)0.0850 (10)
H15A0.3283−0.20560.55430.128*
H15B0.4009−0.14480.52020.128*
H15C0.3612−0.22190.44310.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02977 (17)0.0356 (2)0.0350 (2)0.0000.01448 (13)0.000
N10.0318 (7)0.0305 (8)0.0330 (8)−0.0016 (6)0.0113 (6)−0.0010 (6)
O10.0533 (9)0.0591 (10)0.0499 (10)0.0229 (8)0.0166 (8)0.0156 (8)
O20.0340 (7)0.0464 (9)0.0391 (8)0.0076 (6)0.0167 (6)0.0083 (6)
C10.094 (2)0.087 (2)0.086 (2)0.0422 (19)0.0316 (19)0.0423 (19)
C20.0495 (12)0.0524 (14)0.0538 (14)0.0119 (11)0.0124 (11)0.0160 (11)
C30.0497 (12)0.0564 (14)0.0368 (12)0.0018 (10)0.0118 (10)0.0095 (10)
C40.0425 (10)0.0401 (12)0.0357 (11)0.0003 (9)0.0123 (9)−0.0037 (9)
C50.0322 (9)0.0305 (10)0.0356 (10)−0.0026 (7)0.0110 (8)0.0003 (8)
C60.0486 (12)0.0614 (15)0.0368 (12)0.0157 (11)0.0166 (10)0.0043 (10)
C70.0610 (14)0.0629 (16)0.0547 (14)0.0272 (13)0.0213 (12)0.0037 (12)
C80.0344 (9)0.0373 (10)0.0344 (10)−0.0048 (8)0.0148 (8)0.0001 (8)
C90.0308 (9)0.0358 (10)0.0378 (11)−0.0009 (8)0.0143 (8)−0.0030 (9)
C100.0444 (12)0.0583 (15)0.0539 (14)0.0054 (10)0.0283 (11)0.0048 (11)
C110.0429 (12)0.0791 (18)0.0708 (17)0.0175 (13)0.0312 (12)0.0049 (15)
C120.0404 (11)0.0606 (15)0.0620 (15)0.0184 (11)0.0167 (11)0.0040 (12)
C130.0399 (10)0.0424 (12)0.0400 (11)0.0060 (9)0.0106 (9)−0.0013 (9)
C140.0291 (9)0.0324 (10)0.0349 (10)−0.0012 (7)0.0096 (8)−0.0057 (8)
C150.078 (2)0.098 (2)0.077 (2)0.0455 (18)0.0210 (16)0.0416 (19)

Geometric parameters (Å, °)

Zn1—O2i1.9270 (13)C5—C61.387 (3)
Zn1—O21.9270 (13)C6—C71.378 (3)
Zn1—N12.0043 (15)C6—H6A0.9300
Zn1—N1i2.0043 (15)C7—H7A0.9300
N1—C81.306 (2)C8—C91.426 (3)
N1—C51.430 (2)C8—H8A0.9300
O1—C131.368 (2)C9—C141.412 (3)
O1—C151.421 (3)C9—C101.426 (2)
O2—C141.307 (2)C10—C111.349 (3)
C1—C21.512 (3)C10—H10A0.9300
C1—H1A0.9600C11—C121.398 (3)
C1—H1B0.9600C11—H11A0.9300
C1—H1C0.9600C12—C131.373 (3)
C2—C31.378 (3)C12—H12A0.9300
C2—C71.379 (3)C13—C141.424 (3)
C3—C41.377 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.391 (3)C15—H15C0.9600
C4—H4A0.9300
O2i—Zn1—O2115.11 (9)C5—C6—H6A119.7
O2i—Zn1—N1110.57 (6)C6—C7—C2121.5 (2)
O2—Zn1—N196.45 (6)C6—C7—H7A119.3
O2i—Zn1—N1i96.45 (6)C2—C7—H7A119.3
O2—Zn1—N1i110.57 (6)N1—C8—C9128.41 (17)
N1—Zn1—N1i128.79 (9)N1—C8—H8A115.8
C8—N1—C5118.39 (15)C9—C8—H8A115.8
C8—N1—Zn1119.45 (13)C14—C9—C10119.53 (19)
C5—N1—Zn1122.05 (11)C14—C9—C8125.43 (16)
C13—O1—C15117.05 (19)C10—C9—C8114.97 (18)
C14—O2—Zn1125.29 (12)C11—C10—C9121.3 (2)
C2—C1—H1A109.5C11—C10—H10A119.4
C2—C1—H1B109.5C9—C10—H10A119.4
H1A—C1—H1B109.5C10—C11—C12120.0 (2)
C2—C1—H1C109.5C10—C11—H11A120.0
H1A—C1—H1C109.5C12—C11—H11A120.0
H1B—C1—H1C109.5C13—C12—C11120.4 (2)
C3—C2—C7117.5 (2)C13—C12—H12A119.8
C3—C2—C1121.5 (2)C11—C12—H12A119.8
C7—C2—C1121.0 (2)O1—C13—C12124.2 (2)
C4—C3—C2122.1 (2)O1—C13—C14114.43 (16)
C4—C3—H3A118.9C12—C13—C14121.4 (2)
C2—C3—H3A118.9O2—C14—C9124.19 (17)
C3—C4—C5119.94 (19)O2—C14—C13118.47 (17)
C3—C4—H4A120.0C9—C14—C13117.33 (16)
C5—C4—H4A120.0O1—C15—H15A109.5
C6—C5—C4118.24 (19)O1—C15—H15B109.5
C6—C5—N1118.37 (17)H15A—C15—H15B109.5
C4—C5—N1123.39 (17)O1—C15—H15C109.5
C7—C6—C5120.6 (2)H15A—C15—H15C109.5
C7—C6—H6A119.7H15B—C15—H15C109.5
O2i—Zn1—N1—C8−111.17 (15)C5—N1—C8—C9178.22 (19)
O2—Zn1—N1—C88.73 (15)Zn1—N1—C8—C9−5.4 (3)
N1i—Zn1—N1—C8131.72 (15)N1—C8—C9—C14−1.6 (3)
O2i—Zn1—N1—C565.06 (15)N1—C8—C9—C10−178.4 (2)
O2—Zn1—N1—C5−175.04 (14)C14—C9—C10—C11−0.7 (4)
N1i—Zn1—N1—C5−52.05 (13)C8—C9—C10—C11176.4 (2)
O2i—Zn1—O2—C14107.71 (16)C9—C10—C11—C121.0 (4)
N1—Zn1—O2—C14−8.61 (16)C10—C11—C12—C13−0.2 (4)
N1i—Zn1—O2—C14−144.32 (15)C15—O1—C13—C128.0 (4)
C7—C2—C3—C4−1.5 (4)C15—O1—C13—C14−172.3 (2)
C1—C2—C3—C4178.9 (2)C11—C12—C13—O1178.7 (2)
C2—C3—C4—C50.4 (3)C11—C12—C13—C14−1.0 (4)
C3—C4—C5—C61.7 (3)Zn1—O2—C14—C94.4 (3)
C3—C4—C5—N1−178.54 (18)Zn1—O2—C14—C13−175.95 (14)
C8—N1—C5—C6−151.95 (19)C10—C9—C14—O2179.16 (19)
Zn1—N1—C5—C631.8 (2)C8—C9—C14—O22.4 (3)
C8—N1—C5—C428.3 (3)C10—C9—C14—C13−0.5 (3)
Zn1—N1—C5—C4−147.93 (15)C8—C9—C14—C13−177.21 (19)
C4—C5—C6—C7−2.8 (3)O1—C13—C14—O21.9 (3)
N1—C5—C6—C7177.5 (2)C12—C13—C14—O2−178.3 (2)
C5—C6—C7—C21.7 (4)O1—C13—C14—C9−178.41 (18)
C3—C2—C7—C60.5 (4)C12—C13—C14—C91.3 (3)
C1—C2—C7—C6−179.9 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2636).

References

  • Bhattacharyya, S., Mukhopadhyay, S., Samanta, S., Weakley, T. J. R. & Chaudhury, M. (2002). Inorg. Chem.41, 2433–2440. [PubMed]
  • Bruker (2006). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Iyere, P. A., Boadi, W. Y. & Ross, L. (2004). Acta Cryst. E60, m304–m306.
  • Müller, R. M., Robson, R. & Separovic, S. (2001). Angew. Chem. Int. Ed.40, 4385–4386. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem.26, 1395–1402.
  • Zhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43–m44.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography