PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2082.
Published online 2008 October 9. doi:  10.1107/S1600536808031073
PMCID: PMC2959556

(S)-N-[(1S,2S)-2-Benzyl­amino-1-(4-hy­droxy­phen­yl)-3-methyl­butyl]-1,1-di­methyl­ethane-2-sulfinamide

Abstract

The title compound, C22H32N2O2S, was obtained by dehydroxy­lation and deacetyl­ation of 4-{(1S,2S)-2-(benzylhydroxy­amino)-3-methyl-1-[(S)-2-methyl­propane-2-sulfinylamino]but­yl}phenyl acetate, which was derived from reductive crosslinking of nitrone with N-tert-butane­sulfinyl­imine. The crystal structure shows that the mol­ecules are linked by O—H(...)O hydrogen bonds.

Related literature

For general background on optically pure vicinal diamines, see: Bennai & Hanessian (1997 [triangle]); Kizirian (2008 [triangle]). For the synthesis of the starting material, see: Zhong et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2082-scheme1.jpg

Experimental

Crystal data

  • C22H32N2O2S
  • M r = 388.56
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2082-efi3.jpg
  • a = 9.7503 (9) Å
  • b = 12.1068 (11) Å
  • c = 19.6292 (18) Å
  • V = 2317.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 293 (2) K
  • 0.45 × 0.40 × 0.29 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.783, T max = 1.000 (expected range = 0.749–0.956)
  • 13756 measured reflections
  • 5016 independent reflections
  • 2765 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.130
  • S = 0.89
  • 5016 reflections
  • 261 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 2249 Friedel pairs
  • Flack parameter: 0.01 (10)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031073/bv2109sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031073/bv2109Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Optically pure vicinal diamines are important molecules due to their special structures. Among them, a lot of compounds have been used as catalysts in asymmetric reactions (Bennai & Hanessian, 1997; Kizirian, 2008). In our study of vicinal diamines, we prepared (S)-N-((1S,2S)-2-(benzylamino)-1-(4-hydroxyphenyl) -3-methylbutyl)-2-methylpropane-2-sulfinamide through dehydroxylation and deacetylation of acetic acid 4-[(1S,2S)-2(benzyl-hydroxy-amino)-3-methyl-1- ((S)-2-methyl-propane-2-sulfinylamino)-butyl]-phenyl ester which was prepared according to the reported procedure (Zhong et al., 2004). Here, we report its crystal structure. The molecules are linked by a strong intermolecular O1—H1B···O2i hydrogen interaction. The molecular packing for the compound is shown in Fig. 3, where hydrogen bond interactions are shown as dashed lines. The two benzene rings are almost perpendicular to each other, making a diheral angle of 84.12(0.12)°. The molecule exists in a trans configuration with an N1—C1—C2—N2 torsion angle of 55.6 (3)°. The absolute configuration was known from the starting chiral material and is confirmed by this X-ray analysis.

Experimental

A mixture of Cu(II) acetate (18 mg, 0.1 mmol), zinc powder (324 mg, 5.0 mmol) and acetic acid (2 ml) was stirred for 15 minutes under a nitrogen atmosphere at room temperature. Then a mixture of acetic acid (2 ml), distilled water (0.7 ml) and acetic acid 4-[(1S,2S)-2(benzyl-hydroxy-amino)-3-methyl -1-((S)-2-methyl-propane-2-sulfinylamino)-butyl]-phenyl ester (Zhong et al., 2004) (446 mg, 1.0 mmol) was added. The resulting mixture was heated to 343 K and stirred for an hour. After cooling to room temperature, ethylene diamine tetraacetic acid disodium salt (0.5 g) was added and stirred for 10 minutes. Aqueous KOH (3N) solution was then added to adjust the mixture to a pH value of 10. The resulting solution was extracted with ethyl acetate, and the combined organic layers were washed with saturated aqueous ethylene diamine tetraacetic acid disodium salt and brine successively. Concentrated under reduced pressure, the crude product was dissolved in MeOH (10 ml) and saturated aqueous NaHCO3 (10 ml) was added. The mixture was stirred for 12 h at room temperature and then MeOH was removed under reduced pressure. The crude solid was redissolved in CH2Cl2, washed with brine and dried with anhydrous Na2SO4. After silica gel chromatography, the pure product was obtained as a white solid (yield 77% over two steps). Suitable crystals for the X-ray diffraction experiment were obtained by recrystalization from hexane/CH2Cl2 (3:1). Spectroscopic data: 1H NMR (300 MHz, CDCl3) δ 7.36–7.24 (m, 5H), 7.11 (d, J = 6.0 Hz, 2H), 6.80 (d, J = 5.7 Hz, 2H), 5.49 (s, 1H), 4.02 (m, 2H), 3.77 (d, J = 13.2 Hz, 1H), 2.63(d, J = 9.3 Hz, 1H), 1.72 (m, 2H), 1.14 (s, 9H), 0.95 (d, J = 4.5 Hz, 3H), 0.77 (d, J = 4.5 Hz, 3H). ESI-MS (m/z): 389(M+H+).

Refinement

The hydrogen atoms were generated geometrically (C—H = 0.93, 0.98, 0.97 or 0.96 Å for phenyl, tertiary, methylene or methyl H atoms respectively. The H atoms attached to O and N were refined isotropically. The displacement parameters of methyl H atoms were set to 1.5 times Ueq of the equivalent isotropic displacement parameters of their parent atoms (1.2 times for H atoms attached to phenyl, tertiary, or methylene C atoms).

Figures

Fig. 1.
Plot of C22H32N2O2S at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Hydrogen bonding in the title compound. Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2.
Fig. 3.
Molecular packing plot, viewed along a axis. Hydrogen bond interactions are shown as dashed lines.

Crystal data

C22H32N2O2SF(000) = 840
Mr = 388.56Dx = 1.114 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2613 reflections
a = 9.7503 (9) Åθ = 4.7–40.0°
b = 12.1068 (11) ŵ = 0.16 mm1
c = 19.6292 (18) ÅT = 293 K
V = 2317.1 (4) Å3Prismatic, colourless
Z = 40.45 × 0.40 × 0.29 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer5016 independent reflections
Radiation source: fine-focus sealed tube2765 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −11→12
Tmin = 0.784, Tmax = 1.000k = −14→15
13756 measured reflectionsl = −23→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130w = 1/[σ2(Fo2) + (0.0628P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
5016 reflectionsΔρmax = 0.17 e Å3
261 parametersΔρmin = −0.16 e Å3
3 restraintsAbsolute structure: Flack (1983), with 2249 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.65403 (9)0.95415 (7)0.85995 (4)0.0833 (3)
O10.7047 (3)1.29113 (19)0.61688 (11)0.0852 (7)
O20.5196 (3)0.9143 (2)0.88218 (16)0.1612 (15)
N10.7265 (3)0.8691 (2)0.80538 (11)0.0728 (7)
N20.7310 (3)0.6729 (2)0.73797 (12)0.0631 (6)
C10.6665 (3)0.8654 (2)0.73606 (12)0.0632 (7)
H10.56970.84450.73960.076*
C20.7439 (3)0.7739 (2)0.69788 (12)0.0605 (7)
H20.84120.79430.69880.073*
C30.7030 (4)0.7655 (3)0.62223 (14)0.0791 (9)
H30.70410.84110.60440.095*
C40.5602 (5)0.7234 (4)0.61216 (19)0.1376 (17)
H4A0.53160.73780.56620.206*
H4B0.49930.76020.64320.206*
H4C0.55800.64540.62060.206*
C50.8053 (5)0.7010 (3)0.58036 (15)0.1184 (14)
H5A0.89670.72290.59260.178*
H5B0.79040.71560.53290.178*
H5C0.79390.62350.58900.178*
C60.6761 (3)0.9788 (2)0.70327 (12)0.0590 (7)
C70.5600 (3)1.0341 (3)0.68355 (14)0.0728 (8)
H70.47501.00080.68980.087*
C80.5659 (3)1.1384 (3)0.65456 (15)0.0750 (8)
H80.48551.17450.64200.090*
C90.6911 (3)1.1884 (2)0.64437 (14)0.0677 (7)
C100.8081 (3)1.1331 (3)0.66348 (15)0.0777 (8)
H100.89331.16580.65680.093*
C110.7999 (3)1.0292 (3)0.69266 (14)0.0736 (8)
H110.88010.99290.70530.088*
C120.8389 (4)0.5915 (3)0.73358 (17)0.1013 (12)
H12A0.92680.62840.73750.122*
H12B0.83510.55650.68920.122*
C130.8291 (3)0.5047 (3)0.78733 (14)0.0700 (8)
C140.8323 (3)0.5296 (3)0.85489 (16)0.0841 (8)
H140.83910.60320.86800.101*
C150.8259 (4)0.4497 (4)0.90415 (16)0.1048 (11)
H150.83000.46860.95000.126*
C160.8133 (5)0.3416 (4)0.8847 (2)0.1146 (14)
H160.80850.28670.91770.138*
C170.8076 (5)0.3137 (3)0.8174 (2)0.1120 (13)
H170.79710.24040.80430.134*
C180.8176 (4)0.3956 (3)0.76973 (17)0.0913 (10)
H180.81660.37660.72380.110*
C190.7700 (5)0.9328 (3)0.93164 (15)0.1022 (13)
C200.9065 (5)0.9748 (6)0.9100 (3)0.184 (2)
H20A0.96240.98780.94950.276*
H20B0.89521.04270.88530.276*
H20C0.95020.92120.88130.276*
C210.7701 (9)0.8136 (3)0.95298 (19)0.187 (4)
H21A0.81720.77030.91940.325*
H21B0.67730.78800.95710.325*
H21C0.81580.80640.99610.325*
C220.7108 (6)1.0067 (3)0.98828 (17)0.1491 (19)
H22A0.77181.00661.02670.224*
H22B0.62280.97881.00200.224*
H22C0.70071.08070.97150.224*
H1A0.738 (3)0.8013 (15)0.8199 (13)0.065 (9)*
H2A0.651 (2)0.645 (3)0.7369 (16)0.094 (12)*
H1B0.634 (3)1.329 (3)0.614 (2)0.15 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.1059 (7)0.0689 (5)0.0750 (5)−0.0119 (5)0.0166 (4)−0.0222 (4)
O10.1074 (19)0.0627 (15)0.0853 (15)0.0058 (14)0.0131 (13)0.0169 (12)
O20.135 (2)0.174 (3)0.175 (3)−0.068 (2)0.076 (2)−0.113 (2)
N10.1051 (19)0.0633 (17)0.0501 (13)0.0144 (15)0.0058 (12)0.0019 (13)
N20.0687 (18)0.0526 (15)0.0680 (15)0.0056 (13)0.0095 (12)0.0088 (12)
C10.0726 (18)0.0592 (17)0.0579 (15)0.0020 (15)−0.0025 (15)0.0007 (14)
C20.0737 (18)0.0556 (17)0.0524 (14)−0.0021 (14)0.0000 (14)0.0042 (13)
C30.119 (3)0.0614 (19)0.0570 (17)−0.0054 (19)−0.0165 (17)0.0032 (15)
C40.151 (4)0.160 (4)0.101 (3)−0.011 (3)−0.056 (3)−0.019 (3)
C50.173 (4)0.130 (3)0.0521 (17)0.028 (3)−0.003 (2)−0.018 (2)
C60.0635 (17)0.0550 (17)0.0584 (14)0.0033 (15)0.0039 (13)−0.0034 (13)
C70.072 (2)0.065 (2)0.0817 (19)0.0047 (16)0.0077 (15)0.0019 (18)
C80.082 (2)0.065 (2)0.077 (2)0.0141 (17)0.0021 (17)0.0095 (17)
C90.088 (2)0.0566 (18)0.0590 (15)0.0067 (17)0.0086 (16)−0.0019 (15)
C100.074 (2)0.070 (2)0.090 (2)−0.0025 (17)−0.0012 (17)0.0027 (18)
C110.073 (2)0.063 (2)0.0848 (19)0.0046 (16)−0.0082 (15)0.0026 (17)
C120.113 (3)0.090 (2)0.101 (2)0.036 (2)0.036 (2)0.032 (2)
C130.0714 (19)0.074 (2)0.0646 (17)0.0123 (17)0.0114 (15)0.0132 (16)
C140.094 (2)0.072 (2)0.086 (2)−0.0030 (19)0.0030 (19)−0.003 (2)
C150.142 (3)0.112 (3)0.0610 (18)−0.002 (3)0.002 (2)0.011 (2)
C160.164 (4)0.085 (3)0.094 (3)0.016 (3)0.016 (3)0.030 (2)
C170.164 (4)0.071 (2)0.101 (3)0.012 (3)0.019 (3)0.009 (2)
C180.116 (3)0.079 (3)0.079 (2)0.009 (2)0.000 (2)−0.0023 (19)
C190.181 (4)0.070 (2)0.0555 (17)−0.014 (2)−0.002 (2)−0.0059 (17)
C200.140 (4)0.283 (8)0.130 (4)−0.007 (5)−0.052 (3)−0.018 (5)
C210.309 (12)0.076 (3)0.065 (2)0.030 (4)−0.043 (4)−0.003 (2)
C220.249 (6)0.111 (3)0.087 (2)−0.012 (3)0.005 (3)−0.047 (2)

Geometric parameters (Å, °)

S1—O21.463 (3)C9—C101.374 (4)
S1—N11.645 (2)C10—C111.385 (4)
S1—C191.824 (4)C10—H100.9300
O1—C91.363 (3)C11—H110.9300
O1—H1B0.828 (19)C12—C131.492 (4)
N1—C11.481 (3)C12—H12A0.9700
N1—H1A0.875 (17)C12—H12B0.9700
N2—C121.443 (4)C13—C141.360 (4)
N2—C21.460 (3)C13—C181.370 (4)
N2—H2A0.847 (18)C14—C151.369 (4)
C1—C61.520 (4)C14—H140.9300
C1—C21.536 (4)C15—C161.368 (5)
C1—H10.9800C15—H150.9300
C2—C31.541 (4)C16—C171.364 (5)
C2—H20.9800C16—H160.9300
C3—C41.496 (5)C17—C181.368 (5)
C3—C51.510 (5)C17—H170.9300
C3—H30.9800C18—H180.9300
C4—H4A0.9600C19—C201.487 (6)
C4—H4B0.9600C19—C211.502 (5)
C4—H4C0.9600C19—C221.539 (5)
C5—H5A0.9600C20—H20A0.9600
C5—H5B0.9600C20—H20B0.9600
C5—H5C0.9600C20—H20C0.9600
C6—C111.368 (4)C21—H21A0.9600
C6—C71.371 (4)C21—H21B0.9600
C7—C81.386 (4)C21—H21C0.9600
C7—H70.9300C22—H22A0.9600
C8—C91.378 (4)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
O2—S1—N1111.86 (14)C9—C10—H10119.8
O2—S1—C19106.2 (2)C11—C10—H10119.8
N1—S1—C1998.49 (15)C6—C11—C10121.2 (3)
C9—O1—H1B117 (3)C6—C11—H11119.4
C1—N1—S1116.59 (19)C10—C11—H11119.4
C1—N1—H1A108.7 (18)N2—C12—C13113.1 (2)
S1—N1—H1A115.4 (18)N2—C12—H12A109.0
C12—N2—C2118.5 (2)C13—C12—H12A109.0
C12—N2—H2A114 (2)N2—C12—H12B109.0
C2—N2—H2A113 (2)C13—C12—H12B109.0
N1—C1—C6109.7 (2)H12A—C12—H12B107.8
N1—C1—C2106.0 (2)C14—C13—C18117.5 (3)
C6—C1—C2114.5 (2)C14—C13—C12122.1 (3)
N1—C1—H1108.8C18—C13—C12120.4 (3)
C6—C1—H1108.8C13—C14—C15122.1 (3)
C2—C1—H1108.8C13—C14—H14119.0
N2—C2—C1107.4 (2)C15—C14—H14119.0
N2—C2—C3116.2 (2)C16—C15—C14118.8 (3)
C1—C2—C3113.0 (2)C16—C15—H15120.6
N2—C2—H2106.5C14—C15—H15120.6
C1—C2—H2106.5C17—C16—C15120.7 (3)
C3—C2—H2106.5C17—C16—H16119.6
C4—C3—C5111.5 (3)C15—C16—H16119.6
C4—C3—C2113.0 (3)C16—C17—C18118.7 (4)
C5—C3—C2112.8 (3)C16—C17—H17120.7
C4—C3—H3106.3C18—C17—H17120.7
C5—C3—H3106.3C17—C18—C13122.2 (3)
C2—C3—H3106.3C17—C18—H18118.9
C3—C4—H4A109.5C13—C18—H18118.9
C3—C4—H4B109.5C20—C19—C21114.1 (5)
H4A—C4—H4B109.5C20—C19—C22110.1 (4)
C3—C4—H4C109.5C21—C19—C22110.9 (3)
H4A—C4—H4C109.5C20—C19—S1106.6 (3)
H4B—C4—H4C109.5C21—C19—S1110.6 (3)
C3—C5—H5A109.5C22—C19—S1104.0 (3)
C3—C5—H5B109.5C19—C20—H20A109.5
H5A—C5—H5B109.5C19—C20—H20B109.5
C3—C5—H5C109.5H20A—C20—H20B109.5
H5A—C5—H5C109.5C19—C20—H20C109.5
H5B—C5—H5C109.5H20A—C20—H20C109.5
C11—C6—C7117.9 (3)H20B—C20—H20C109.5
C11—C6—C1121.4 (3)C19—C21—H21A109.5
C7—C6—C1120.7 (3)C19—C21—H21B109.5
C6—C7—C8121.8 (3)H21A—C21—H21B109.5
C6—C7—H7119.1C19—C21—H21C109.5
C8—C7—H7119.1H21A—C21—H21C109.5
C9—C8—C7119.8 (3)H21B—C21—H21C109.5
C9—C8—H8120.1C19—C22—H22A109.5
C7—C8—H8120.1C19—C22—H22B109.5
O1—C9—C10118.2 (3)H22A—C22—H22B109.5
O1—C9—C8123.0 (3)C19—C22—H22C109.5
C10—C9—C8118.8 (3)H22A—C22—H22C109.5
C9—C10—C11120.5 (3)H22B—C22—H22C109.5
O2—S1—N1—C172.0 (3)O1—C9—C10—C11179.0 (2)
C19—S1—N1—C1−176.7 (2)C8—C9—C10—C11−0.2 (4)
S1—N1—C1—C660.5 (3)C7—C6—C11—C100.6 (4)
S1—N1—C1—C2−175.33 (19)C1—C6—C11—C10−179.2 (2)
C12—N2—C2—C1−151.5 (3)C9—C10—C11—C6−0.1 (5)
C12—N2—C2—C380.9 (4)C2—N2—C12—C13167.6 (3)
N1—C1—C2—N255.6 (3)N2—C12—C13—C14−59.0 (5)
C6—C1—C2—N2176.7 (2)N2—C12—C13—C18121.6 (4)
N1—C1—C2—C3−174.9 (2)C18—C13—C14—C150.7 (5)
C6—C1—C2—C3−53.8 (3)C12—C13—C14—C15−178.8 (3)
N2—C2—C3—C455.6 (4)C13—C14—C15—C16−1.2 (6)
C1—C2—C3—C4−69.3 (4)C14—C15—C16—C170.2 (7)
N2—C2—C3—C5−72.1 (4)C15—C16—C17—C181.3 (7)
C1—C2—C3—C5163.1 (3)C16—C17—C18—C13−1.9 (6)
N1—C1—C6—C1160.3 (3)C14—C13—C18—C170.9 (5)
C2—C1—C6—C11−58.7 (3)C12—C13—C18—C17−179.6 (3)
N1—C1—C6—C7−119.5 (3)O2—S1—C19—C20−179.0 (3)
C2—C1—C6—C7121.5 (3)N1—S1—C19—C2065.2 (3)
C11—C6—C7—C8−0.9 (4)O2—S1—C19—C2156.4 (4)
C1—C6—C7—C8178.9 (2)N1—S1—C19—C21−59.4 (4)
C6—C7—C8—C90.6 (4)O2—S1—C19—C22−62.7 (3)
C7—C8—C9—O1−179.2 (3)N1—S1—C19—C22−178.5 (3)
C7—C8—C9—C10−0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.83 (2)1.82 (2)2.647 (4)173 (5)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2109).

References

  • Bennai, Y. L. & Hanessian, S. (1997). Chem. Rev.97, 3161–3196. [PubMed]
  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kizirian, J. C. (2008). Chem. Rev.108, 140–205. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhong, Y.-W., Xu, M.-H. & Lin, G.-Q. (2004). Org. Lett.6, 3953–3956. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography