PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2206.
Published online 2008 October 25. doi:  10.1107/S1600536808034429
PMCID: PMC2959554

3-(4-Ethoxy­benzo­yl)propionic acid

Abstract

The title compound, C12H14O4, is an important inter­mediate in the synthesis of biologically active heterocyclic compounds. In the crystal structure, inter­molecular O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules. There are also C—H(...)π contacts between the benzene ring and the methyl­ene groups.

Related literature

For general background, see: Hashem et al. (2007 [triangle]); Husain et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2206-scheme1.jpg

Experimental

Crystal data

  • C12H14O4
  • M r = 222.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2206-efi1.jpg
  • a = 7.8371 (3) Å
  • b = 8.7399 (5) Å
  • c = 9.8140 (5) Å
  • α = 106.993 (4)°
  • β = 107.541 (4)°
  • γ = 107.142 (4)°
  • V = 556.34 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 150 (1) K
  • 0.34 × 0.32 × 0.31 mm

Data collection

  • Bruker–Nonius KappaCCD area-detector diffractometer
  • Absorption correction: Gaussian (Coppens, 1970 [triangle]) T min = 0.964, T max = 0.987
  • 8993 measured reflections
  • 2508 independent reflections
  • 2089 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.123
  • S = 1.11
  • 2508 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034429/hk2555sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034429/hk2555Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Benzoyl propionic acids are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five -membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005), oxadiazoles and triazoles (Hashem et al., 2007). In view of the versatility of these compounds, we synthesized the title compound and reported herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges . O4, C2, C3, C4, C11 and C12 atoms are -0.011 (3), 0.162 (4), 0.189 (4), -0.09 (3), -0.143 (3) and -0.151 (3) Å away from the phenyl plane, respectively.

In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist C—H···π contacts (Table 1) between the phenyl ring and the methylene groups.

Experimental

The title compound was synthesized by the condensation of succinic anhydride (2 g, 20 mmol) with 1-ethoxybenzene (10 ml) in the presence of alumium chloride (6 g, 42 mmol). The reaction mixture was refluxed for 4 h. After completion of the reaction, excess solvent (Anisol) was removed by steam distillation. The resultant solid product was purified by dissolving it in sodium hydroxide solution (5%, w/v), filtering followed by addition of hydrochloric acid. The obtained solid mass was filtered, washed with cold water, dried and crystallized from methanol (yield; 67%, m.p. 404-405 K).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The formation of the title compound.

Crystal data

C12H14O4Z = 2
Mr = 222.23F(000) = 236
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Melting point: 404(1) K
a = 7.8371 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7399 (5) ÅCell parameters from 9044 reflections
c = 9.8140 (5) Åθ = 1–27.5°
α = 106.993 (4)°µ = 0.10 mm1
β = 107.541 (4)°T = 150 K
γ = 107.142 (4)°Block, colorless
V = 556.34 (6) Å30.34 × 0.32 × 0.31 mm

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer2508 independent reflections
Radiation source: fine-focus sealed tube2089 reflections with I > 2σ(I)
graphiteRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.4°
[var phi] and ω scansh = −10→10
Absorption correction: gaussian (Coppens, 1970)k = −11→11
Tmin = 0.964, Tmax = 0.987l = −12→12
8993 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0401P)2 + 0.2871P] where P = (Fo2 + 2Fc2)/3
2508 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.19232 (17)0.45879 (16)0.01166 (16)0.0387 (3)
O2−0.11942 (17)0.27131 (16)−0.14840 (16)0.0419 (3)
H2−0.13880.3584−0.11180.050*
O30.21830 (18)0.16047 (18)0.13387 (15)0.0373 (3)
O41.07552 (17)0.25792 (17)0.51668 (14)0.0352 (3)
C10.0717 (2)0.3129 (2)−0.08709 (19)0.0287 (3)
C20.1221 (2)0.1655 (2)−0.15467 (19)0.0295 (3)
H2A0.10610.1493−0.26060.035*
H2B0.03080.0577−0.16150.035*
C30.3310 (2)0.1968 (2)−0.05809 (19)0.0279 (3)
H3A0.42100.3134−0.03640.033*
H3B0.36580.1115−0.11840.033*
C40.3542 (2)0.1827 (2)0.09544 (18)0.0261 (3)
C50.5470 (2)0.1981 (2)0.19915 (18)0.0258 (3)
C60.5593 (2)0.1507 (2)0.32477 (19)0.0302 (4)
H60.44580.10430.33850.036*
C70.7366 (3)0.1717 (2)0.4281 (2)0.0322 (4)
H70.74270.13940.51110.039*
C80.9075 (2)0.2414 (2)0.40859 (19)0.0293 (3)
C90.8975 (2)0.2867 (2)0.2828 (2)0.0326 (4)
H91.01050.33140.26790.039*
C100.7176 (2)0.2637 (2)0.1798 (2)0.0306 (4)
H100.71070.29330.09520.037*
C111.2575 (2)0.3431 (2)0.5103 (2)0.0338 (4)
H11A1.27810.46180.52090.041*
H11B1.25540.27830.41050.041*
C121.4192 (3)0.3482 (3)0.6432 (2)0.0424 (4)
H12A1.41920.41180.74120.051*
H12B1.54390.40590.64290.051*
H12C1.39810.23000.63080.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0274 (6)0.0308 (6)0.0479 (8)0.0141 (5)0.0076 (5)0.0101 (6)
O20.0270 (6)0.0365 (7)0.0490 (8)0.0156 (5)0.0077 (6)0.0076 (6)
O30.0318 (6)0.0519 (8)0.0351 (7)0.0193 (6)0.0182 (5)0.0212 (6)
O40.0299 (6)0.0454 (7)0.0319 (6)0.0157 (5)0.0100 (5)0.0213 (6)
C10.0257 (8)0.0316 (8)0.0305 (8)0.0125 (7)0.0099 (7)0.0170 (7)
C20.0294 (8)0.0327 (8)0.0249 (8)0.0138 (7)0.0094 (6)0.0116 (6)
C30.0294 (8)0.0308 (8)0.0278 (8)0.0166 (7)0.0129 (7)0.0130 (7)
C40.0292 (8)0.0233 (7)0.0267 (8)0.0121 (6)0.0132 (6)0.0091 (6)
C50.0297 (8)0.0256 (7)0.0248 (8)0.0144 (6)0.0118 (6)0.0110 (6)
C60.0321 (8)0.0338 (8)0.0308 (8)0.0157 (7)0.0172 (7)0.0155 (7)
C70.0369 (9)0.0364 (9)0.0290 (8)0.0169 (7)0.0154 (7)0.0178 (7)
C80.0311 (8)0.0295 (8)0.0272 (8)0.0151 (7)0.0095 (7)0.0122 (7)
C90.0293 (8)0.0389 (9)0.0347 (9)0.0145 (7)0.0156 (7)0.0197 (8)
C100.0322 (8)0.0382 (9)0.0286 (8)0.0170 (7)0.0146 (7)0.0192 (7)
C110.0305 (8)0.0383 (9)0.0297 (9)0.0135 (7)0.0103 (7)0.0141 (7)
C120.0325 (9)0.0505 (11)0.0374 (10)0.0138 (8)0.0088 (8)0.0196 (9)

Geometric parameters (Å, °)

O2—H20.8200C5—C101.384 (2)
O3—C41.2156 (19)C6—C71.373 (2)
O4—C81.3552 (19)C6—H60.9300
O4—C111.431 (2)C7—H70.9300
C1—O11.214 (2)C8—C71.394 (2)
C1—O21.3210 (19)C8—C91.390 (2)
C1—C21.488 (2)C9—H90.9300
C2—H2A0.9700C10—C91.381 (2)
C2—H2B0.9701C10—H100.9300
C3—C21.517 (2)C11—C121.500 (2)
C3—C41.508 (2)C11—H11A0.9700
C3—H3A0.9700C11—H11B0.9700
C3—H3B0.9700C12—H12A0.9599
C5—C41.487 (2)C12—H12B0.9600
C5—C61.397 (2)C12—H12C0.9600
C1—O2—H2109.5C5—C6—H6119.6
C8—O4—C11117.96 (13)C6—C7—C8120.05 (15)
O1—C1—O2122.54 (15)C6—C7—H7120.0
O1—C1—C2124.21 (14)C8—C7—H7120.0
O2—C1—C2113.22 (14)O4—C8—C9124.30 (15)
C1—C2—C3112.93 (14)O4—C8—C7115.80 (14)
C1—C2—H2A109.0C9—C8—C7119.89 (15)
C3—C2—H2A109.0C10—C9—C8119.16 (15)
C1—C2—H2B109.0C10—C9—H9120.4
C3—C2—H2B108.9C8—C9—H9120.4
H2A—C2—H2B107.8C9—C10—C5121.76 (15)
C4—C3—C2111.95 (13)C9—C10—H10119.2
C4—C3—H3A109.1C5—C10—H10119.1
C2—C3—H3A109.1O4—C11—C12107.39 (14)
C4—C3—H3B109.4O4—C11—H11A110.2
C2—C3—H3B109.4C12—C11—H11A110.3
H3A—C3—H3B107.9O4—C11—H11B110.3
O3—C4—C5120.78 (14)C12—C11—H11B110.2
O3—C4—C3120.57 (14)H11A—C11—H11B108.5
C5—C4—C3118.65 (13)C11—C12—H12A109.4
C10—C5—C6118.30 (15)C11—C12—H12B109.5
C10—C5—C4122.60 (14)H12A—C12—H12B109.5
C6—C5—C4119.06 (14)C11—C12—H12C109.5
C7—C6—C5120.82 (15)H12A—C12—H12C109.5
C7—C6—H6119.6H12B—C12—H12C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.852.664 (3)172
C2—H2B···O3ii0.972.443.386 (3)165
C11—H11B···O3iii0.972.503.445 (3)166
C3—H3B···Cg1iv0.972.663.528 (3)150
C11—H11A···Cg1v0.972.843.679 (3)145

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y, −z; (iii) x+1, y, z; (iv) −x+1, −y, −z; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2555).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  • Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem.42, 934–939. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem.40, 1394–1404. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography