PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2130.
Published online 2008 October 18. doi:  10.1107/S1600536808032996
PMCID: PMC2959543

3,9-Di-2-furyl-2,4,8,10-tetra­oxa­spiro­[5.5]undecane

Abstract

The title compound, C15H16O6, was prepared by reaction of 2,2-bis­(hydroxy­meth­yl)propane-1,3-diol with 2-furaldehyde in the presence of hydro­chloric acid at room temperature. The asymmetric unit contains two crystallographically independent mol­ecules. In these two mol­ecules, the dihedral angles between the five-membered rings are 56.4 (3) and 56.3 (3)°. The six-membered rings adopt chair conformations. Inter­molecular C—H(...)π inter­actions link the mol­ecules and may be effective in the stabilization of the crystal structure.

Related literature

For background on di-acetals of penta­erythritol, see: Jermy & Pandurangan (2005 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2130-scheme1.jpg

Experimental

Crystal data

  • C15H16O6
  • M r = 292.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2130-efi1.jpg
  • a = 11.756 (3) Å
  • b = 5.5832 (13) Å
  • c = 42.728 (9) Å
  • V = 2804.5 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 273 (2) K
  • 0.20 × 0.15 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 13819 measured reflections
  • 3554 independent reflections
  • 1793 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.125
  • S = 1.02
  • 3554 reflections
  • 380 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032996/at2637sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032996/at2637Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The di-acetals of pentaerythritol are a series of useful organic compounds. They have been used as important intermediates in the synthesis of pesticides (Jermy & Pandurangan, 2005). we sythesis the title compound (I) and report its crystal structure here.

In the crystal structure of (I), the asymmetric unit contains two crystallographically independent molecules (Fig. 1). The dihedral angle formed by the ring (O1A/C1A–C4A) and the ring (O6A/C12A–C15A) is 56.4 (3)° and 56.3 (3)° for the ring (O1CA/C1C–C4C) and the ring (O6C/C12C–C15C). The six-membered rings of the two independent molecules of (I), (O2A/O3A/C5A–C8A), (O2C/O3C/C5C–C8C), (O4A/O5A/C8A–C11A) and (O4C/O5C/C8C–C11C) have chair conformations [the puckering parameters: QT = 0.564 (5) Å, [var phi] = 170 (15)°, θ = 0.0 (5)°; QT = 0.563 (5) Å, [var phi] = 244 (10)°, θ = 176.7 (5)°; QT = 0.574 (5) Å, [var phi] = 292 (9)°, θ = 2.3 (5)° and QT = 0.573 (5) Å, [var phi] = 309 (22)°, θ = 178.1 (5)°, respectively (Cremer & Pople, 1975)].

Intermolecular C···H···π link the molecules and may be effective in the stabilization of the crystal structure (Table 1).

Experimental

The title compound (I) was prepared by the process as following: ethyl isonicotinate 1.51 g (0.01 mol) and hydrazine hydrate 0.32 g (0.01 mol) with ethanol at 377 K for 3 h, afford ivory-white compound A 1.32 g (yield 96%), then add 0.06 ml carbon disulfide and KOH 0.56 g(0.01 mol) with ethanol, stirred at room temperature for 5 h, afford yellow compound B 2.0 g (yield 85.6%). At last, add 0.32 g hydrazine hydrate to the compound B with water at 377 K for 12 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from DMF-HCl(3:1) at 334 K.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq of the parent atoms. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.
The molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C15H16O6F(000) = 1232
Mr = 292.28Dx = 1.384 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2523 reflections
a = 11.756 (3) Åθ = 1.9–28.8°
b = 5.5832 (13) ŵ = 0.11 mm1
c = 42.728 (9) ÅT = 273 K
V = 2804.5 (11) Å3Bar, colourless
Z = 80.20 × 0.15 × 0.13 mm

Data collection

Bruker SMART CCD area-detector diffractometer1793 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
graphiteθmax = 28.8°, θmin = 1.9°
[var phi] and ω scansh = −15→15
13819 measured reflectionsk = −7→6
3554 independent reflectionsl = −28→57

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.125w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3554 reflectionsΔρmax = 0.17 e Å3
380 parametersΔρmin = −0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A−0.9377 (3)−0.0310 (7)−0.19447 (12)0.0640 (12)
O2A−0.7186 (2)−0.2654 (6)−0.14554 (7)0.0511 (8)
O3A−0.8254 (3)0.0757 (7)−0.13372 (8)0.0497 (8)
O4A−0.4986 (2)−0.0918 (6)−0.06685 (8)0.0501 (8)
O5A−0.6606 (2)−0.3243 (5)−0.06050 (7)0.0485 (8)
O6A−0.5577 (3)−0.5078 (7)−0.00488 (13)0.0686 (14)
C1A−1.0251 (4)−0.1649 (13)−0.20675 (12)0.0699 (17)
H1−1.0780−0.1086−0.22120.084*
C2A−1.0235 (5)−0.3856 (14)−0.19522 (15)0.0729 (17)
H2−1.0737−0.5093−0.19990.087*
C3A−0.9290 (4)−0.3953 (12)−0.17413 (12)0.0610 (14)
H3A−0.9060−0.5269−0.16240.073*
C4A−0.8807 (4)−0.1810 (9)−0.17450 (11)0.0493 (13)
C5A−0.7824 (4)−0.0747 (10)−0.15763 (12)0.0488 (12)
H3−0.73580.0191−0.17220.059*
C6A−0.6229 (3)−0.1810 (9)−0.12730 (11)0.0498 (12)
H4−0.5708−0.0946−0.14080.060*
H5−0.5825−0.3170−0.11860.060*
C7A−0.7335 (4)0.1789 (9)−0.11575 (12)0.0529 (13)
H6−0.76440.2807−0.09940.063*
H7−0.68640.2770−0.12930.063*
C8A−0.6613 (4)−0.0183 (8)−0.10104 (15)0.0406 (15)
C9A−0.5593 (4)0.0911 (10)−0.08414 (13)0.0564 (13)
H8−0.50860.1644−0.09930.068*
H9−0.58520.2148−0.06990.068*
C10A−0.7312 (3)−0.1575 (8)−0.07684 (11)0.0479 (12)
H10A−0.7649−0.0464−0.06200.058*
H10B−0.7923−0.2426−0.08730.058*
C11A−0.5709 (4)−0.2040 (8)−0.04513 (11)0.0466 (11)
H11A−0.6017−0.0853−0.03050.056*
C12A−0.5016 (3)−0.3830 (8)−0.02793 (10)0.0429 (11)
C13A−0.3940 (4)−0.4551 (11)−0.02931 (16)0.0567 (16)
H13A−0.3380−0.3968−0.04270.068*
C14A−0.3807 (4)−0.6389 (9)−0.00639 (13)0.0592 (14)
H14A−0.3146−0.7240−0.00200.071*
C15A−0.4803 (5)−0.6641 (10)0.00723 (13)0.0683 (16)
H15A−0.4958−0.77400.02300.082*
O1C−0.8218 (3)0.0078 (6)−0.44998 (13)0.0703 (15)
O2C−0.7613 (2)−0.4102 (6)−0.38836 (8)0.0505 (8)
O3C−0.9241 (2)−0.1758 (5)−0.39479 (7)0.0472 (8)
O4C−0.9819 (2)−0.2334 (6)−0.31003 (7)0.0522 (8)
O5C−1.0889 (3)−0.5735 (6)−0.32170 (8)0.0488 (8)
O6C−1.1999 (3)−0.4592 (7)−0.25972 (11)0.0637 (12)
C1C−0.7431 (5)0.1642 (10)−0.46269 (13)0.0670 (15)
H10−0.75800.2719−0.47880.080*
C2C−0.6432 (4)0.1384 (9)−0.44859 (13)0.0594 (14)
H11−0.57710.2238−0.45290.071*
C3C−0.6563 (4)−0.0432 (10)−0.42592 (15)0.0525 (14)
H12−0.6004−0.1010−0.41250.063*
C4C−0.7649 (4)−0.1166 (9)−0.42743 (11)0.0467 (12)
C5C−0.8333 (3)−0.2969 (8)−0.40988 (12)0.0486 (12)
H13−0.8641−0.4157−0.42450.058*
C6C−0.8220 (4)−0.5912 (10)−0.37114 (13)0.0545 (13)
H14−0.7716−0.6637−0.35590.065*
H15−0.8473−0.7156−0.38540.065*
C7C−0.9949 (3)−0.3431 (8)−0.37802 (11)0.0492 (13)
H16−1.0294−0.4539−0.39270.059*
H17−1.0553−0.2570−0.36740.059*
C8C−0.9258 (4)−0.4814 (8)−0.35426 (16)0.0446 (16)
C9C−0.8853 (3)−0.3187 (9)−0.32749 (11)0.0486 (12)
H18−0.8349−0.4075−0.31380.058*
H19−0.8434−0.1839−0.33600.058*
C10C−0.9987 (4)−0.6797 (8)−0.33978 (13)0.0540 (13)
H10C−1.0306−0.7793−0.35620.065*
H10D−0.9520−0.7800−0.32640.065*
C11C−1.0466 (4)−0.4235 (10)−0.29762 (12)0.0445 (11)
H11B−1.0004−0.5173−0.28300.053*
C12C−1.1446 (4)−0.3143 (9)−0.28089 (11)0.0502 (13)
C13C−1.1951 (4)−0.0968 (11)−0.28203 (12)0.0587 (14)
H13B−1.17400.0319−0.29460.070*
C14C−1.2866 (4)−0.1037 (14)−0.26034 (13)0.0701 (15)
H14C−1.33700.0201−0.25590.084*
C15C−1.2864 (4)−0.3213 (13)−0.24756 (13)0.0708 (17)
H15B−1.3377−0.3731−0.23240.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.056 (2)0.081 (3)0.055 (3)−0.0011 (19)−0.010 (2)0.012 (2)
O2A0.0440 (17)0.049 (2)0.0598 (19)0.0066 (15)−0.0060 (16)−0.0094 (16)
O3A0.0468 (18)0.047 (2)0.055 (2)0.0073 (16)−0.0066 (17)−0.002 (2)
O4A0.0347 (16)0.053 (2)0.063 (2)−0.0062 (14)−0.0055 (16)0.007 (2)
O5A0.0325 (16)0.052 (2)0.0610 (18)−0.0038 (13)−0.0051 (15)0.0122 (16)
O6A0.045 (2)0.091 (4)0.070 (3)0.0075 (18)0.005 (2)0.032 (2)
C1A0.050 (3)0.104 (6)0.056 (4)−0.002 (3)−0.012 (3)−0.006 (3)
C2A0.059 (4)0.077 (5)0.083 (4)−0.010 (3)−0.010 (3)−0.020 (4)
C3A0.058 (3)0.062 (4)0.062 (3)−0.007 (3)−0.011 (3)−0.004 (3)
C4A0.043 (3)0.058 (4)0.047 (3)0.002 (2)−0.005 (2)0.002 (2)
C5A0.043 (3)0.051 (3)0.053 (3)0.004 (2)0.003 (2)0.006 (3)
C6A0.038 (3)0.059 (3)0.052 (3)0.003 (2)0.002 (2)0.004 (2)
C7A0.053 (3)0.046 (3)0.060 (3)−0.003 (2)−0.015 (3)−0.002 (3)
C8A0.032 (2)0.040 (4)0.050 (4)0.0023 (18)−0.004 (2)−0.001 (2)
C9A0.053 (3)0.043 (3)0.073 (4)−0.006 (2)−0.015 (3)0.000 (3)
C10A0.034 (2)0.053 (3)0.057 (3)0.009 (2)−0.007 (2)0.005 (2)
C11A0.042 (3)0.052 (3)0.046 (3)0.000 (2)−0.005 (2)−0.001 (2)
C12A0.036 (2)0.053 (3)0.040 (3)−0.002 (2)0.001 (2)0.000 (2)
C13A0.045 (3)0.062 (4)0.063 (4)0.004 (2)0.010 (3)0.010 (3)
C14A0.052 (3)0.065 (4)0.061 (4)0.008 (2)−0.014 (3)0.002 (3)
C15A0.058 (3)0.081 (4)0.066 (4)−0.002 (3)−0.007 (3)0.025 (3)
O1C0.0427 (19)0.092 (4)0.076 (3)0.0014 (17)−0.001 (2)0.032 (2)
O2C0.0375 (16)0.052 (2)0.062 (2)0.0069 (15)0.0041 (17)0.008 (2)
O3C0.0334 (16)0.053 (2)0.0553 (18)0.0017 (14)0.0044 (14)0.0040 (16)
O4C0.0429 (18)0.051 (2)0.062 (2)−0.0053 (15)0.0059 (16)−0.0054 (17)
O5C0.0437 (18)0.0462 (19)0.057 (2)−0.0067 (16)0.0043 (17)−0.001 (2)
O6C0.061 (2)0.074 (3)0.056 (3)−0.0053 (18)0.009 (2)0.007 (2)
C1C0.058 (3)0.076 (4)0.068 (3)−0.001 (3)0.012 (3)0.032 (3)
C2C0.052 (3)0.062 (4)0.064 (4)−0.011 (2)−0.001 (3)0.004 (3)
C3C0.041 (3)0.065 (4)0.051 (4)−0.005 (2)0.000 (3)0.003 (3)
C4C0.040 (3)0.054 (3)0.046 (3)−0.001 (2)0.001 (2)0.002 (3)
C5C0.037 (2)0.051 (3)0.058 (3)0.003 (2)0.004 (2)−0.004 (2)
C6C0.048 (3)0.050 (3)0.066 (3)0.006 (2)0.012 (3)0.008 (3)
C7C0.035 (2)0.053 (3)0.060 (3)−0.003 (2)−0.002 (2)0.002 (2)
C8C0.042 (3)0.034 (3)0.058 (4)−0.0001 (18)0.001 (3)0.001 (2)
C9C0.031 (2)0.058 (3)0.057 (3)−0.002 (2)0.004 (2)−0.005 (2)
C10C0.057 (3)0.042 (3)0.063 (3)−0.004 (2)0.012 (3)0.000 (3)
C11C0.044 (3)0.048 (3)0.042 (3)0.002 (2)−0.002 (2)0.006 (3)
C12C0.047 (3)0.067 (4)0.036 (3)−0.005 (2)−0.003 (2)0.005 (2)
C13C0.058 (3)0.064 (4)0.055 (3)0.013 (3)0.007 (3)0.005 (3)
C14C0.055 (3)0.095 (5)0.060 (4)0.014 (3)0.005 (3)−0.011 (4)
C15C0.048 (3)0.106 (5)0.059 (3)−0.006 (3)0.015 (3)−0.011 (4)

Geometric parameters (Å, °)

O1A—C4A1.370 (6)O1C—C4C1.363 (6)
O1A—C1A1.374 (7)O1C—C1C1.383 (6)
O2A—C5A1.401 (6)O2C—C5C1.401 (5)
O2A—C6A1.448 (5)O2C—C6C1.439 (6)
O3A—C5A1.416 (6)O3C—C5C1.418 (5)
O3A—C7A1.445 (5)O3C—C7C1.442 (5)
O4A—C11A1.405 (5)O4C—C11C1.410 (6)
O4A—C9A1.448 (6)O4C—C9C1.439 (5)
O5A—C11A1.412 (5)O5C—C11C1.417 (6)
O5A—C10A1.430 (5)O5C—C10C1.440 (6)
O6A—C15A1.363 (6)O6C—C15C1.377 (7)
O6A—C12A1.375 (6)O6C—C12C1.377 (6)
C1A—C2A1.327 (9)C1C—C2C1.327 (7)
C1A—H10.9300C1C—H100.9300
C2A—C3A1.431 (7)C2C—C3C1.411 (8)
C2A—H20.9300C2C—H110.9300
C3A—C4A1.324 (7)C3C—C4C1.343 (6)
C3A—H3A0.9300C3C—H120.9300
C4A—C5A1.486 (6)C4C—C5C1.491 (6)
C5A—H30.9800C5C—H130.9800
C6A—C8A1.512 (8)C6C—C8C1.545 (7)
C6A—H40.9700C6C—H140.9700
C6A—H50.9700C6C—H150.9700
C7A—C8A1.526 (7)C7C—C8C1.512 (7)
C7A—H60.9700C7C—H160.9700
C7A—H70.9700C7C—H170.9700
C8A—C9A1.528 (7)C8C—C10C1.531 (7)
C8A—C10A1.532 (7)C8C—C9C1.536 (8)
C9A—H80.9700C9C—H180.9700
C9A—H90.9700C9C—H190.9700
C10A—H10A0.9700C10C—H10C0.9700
C10A—H10B0.9700C10C—H10D0.9700
C11A—C12A1.484 (6)C11C—C12C1.487 (7)
C11A—H11A0.9800C11C—H11B0.9800
C12A—C13A1.328 (6)C12C—C13C1.352 (7)
C13A—C14A1.427 (8)C13C—C14C1.420 (7)
C13A—H13A0.9300C13C—H13B0.9300
C14A—C15A1.315 (6)C14C—C15C1.332 (8)
C14A—H14A0.9300C14C—H14C0.9300
C15A—H15A0.9300C15C—H15B0.9300
C4A—O1A—C1A105.7 (5)C4C—O1C—C1C105.7 (4)
C5A—O2A—C6A111.5 (4)C5C—O2C—C6C110.7 (3)
C5A—O3A—C7A110.7 (3)C5C—O3C—C7C110.6 (3)
C11A—O4A—C9A110.7 (3)C11C—O4C—C9C111.8 (4)
C11A—O5A—C10A110.5 (3)C11C—O5C—C10C112.0 (3)
C15A—O6A—C12A106.0 (4)C15C—O6C—C12C105.5 (5)
C2A—C1A—O1A110.7 (5)C2C—C1C—O1C110.2 (5)
C2A—C1A—H1124.7C2C—C1C—H10124.9
O1A—C1A—H1124.7O1C—C1C—H10124.9
C1A—C2A—C3A106.2 (6)C1C—C2C—C3C107.0 (4)
C1A—C2A—H2126.9C1C—C2C—H11126.5
C3A—C2A—H2126.9C3C—C2C—H11126.5
C4A—C3A—C2A106.9 (6)C4C—C3C—C2C106.9 (5)
C4A—C3A—H3A126.5C4C—C3C—H12126.6
C2A—C3A—H3A126.5C2C—C3C—H12126.6
C3A—C4A—O1A110.5 (4)C3C—C4C—O1C110.2 (5)
C3A—C4A—C5A133.5 (5)C3C—C4C—C5C134.0 (5)
O1A—C4A—C5A116.0 (5)O1C—C4C—C5C115.8 (4)
O2A—C5A—O3A112.1 (4)O2C—C5C—O3C111.8 (4)
O2A—C5A—C4A107.0 (4)O2C—C5C—C4C108.0 (4)
O3A—C5A—C4A108.0 (3)O3C—C5C—C4C108.2 (4)
O2A—C5A—H3109.9O2C—C5C—H13109.6
O3A—C5A—H3109.9O3C—C5C—H13109.6
C4A—C5A—H3109.9C4C—C5C—H13109.6
O2A—C6A—C8A111.3 (3)O2C—C6C—C8C110.6 (4)
O2A—C6A—H4109.4O2C—C6C—H14109.5
C8A—C6A—H4109.4C8C—C6C—H14109.5
O2A—C6A—H5109.4O2C—C6C—H15109.5
C8A—C6A—H5109.4C8C—C6C—H15109.5
H4—C6A—H5108.0H14—C6C—H15108.1
O3A—C7A—C8A110.3 (4)O3C—C7C—C8C110.8 (3)
O3A—C7A—H6109.6O3C—C7C—H16109.5
C8A—C7A—H6109.6C8C—C7C—H16109.5
O3A—C7A—H7109.6O3C—C7C—H17109.5
C8A—C7A—H7109.6C8C—C7C—H17109.5
H6—C7A—H7108.1H16—C7C—H17108.1
C6A—C8A—C9A110.8 (4)C7C—C8C—C10C109.9 (4)
C6A—C8A—C7A107.1 (5)C7C—C8C—C9C111.4 (4)
C9A—C8A—C7A110.0 (4)C10C—C8C—C9C107.5 (5)
C6A—C8A—C10A110.9 (4)C7C—C8C—C6C108.3 (5)
C9A—C8A—C10A107.7 (5)C10C—C8C—C6C110.1 (4)
C7A—C8A—C10A110.2 (4)C9C—C8C—C6C109.7 (4)
O4A—C9A—C8A110.2 (4)O4C—C9C—C8C109.7 (3)
O4A—C9A—H8109.6O4C—C9C—H18109.7
C8A—C9A—H8109.6C8C—C9C—H18109.7
O4A—C9A—H9109.6O4C—C9C—H19109.7
C8A—C9A—H9109.6C8C—C9C—H19109.7
H8—C9A—H9108.1H18—C9C—H19108.2
O5A—C10A—C8A110.4 (3)O5C—C10C—C8C109.3 (4)
O5A—C10A—H10A109.6O5C—C10C—H10C109.8
C8A—C10A—H10A109.6C8C—C10C—H10C109.8
O5A—C10A—H10B109.6O5C—C10C—H10D109.8
C8A—C10A—H10B109.6C8C—C10C—H10D109.8
H10A—C10A—H10B108.1H10C—C10C—H10D108.3
O4A—C11A—O5A110.9 (4)O4C—C11C—O5C111.2 (4)
O4A—C11A—C12A107.2 (3)O4C—C11C—C12C106.9 (4)
O5A—C11A—C12A108.7 (4)O5C—C11C—C12C108.7 (4)
O4A—C11A—H11A110.0O4C—C11C—H11B110.0
O5A—C11A—H11A110.0O5C—C11C—H11B110.0
C12A—C11A—H11A110.0C12C—C11C—H11B110.0
C13A—C12A—O6A109.6 (5)C13C—C12C—O6C110.1 (5)
C13A—C12A—C11A134.8 (5)C13C—C12C—C11C133.7 (5)
O6A—C12A—C11A115.6 (4)O6C—C12C—C11C116.2 (5)
C12A—C13A—C14A107.0 (5)C12C—C13C—C14C106.5 (6)
C12A—C13A—H13A126.5C12C—C13C—H13B126.7
C14A—C13A—H13A126.5C14C—C13C—H13B126.7
C15A—C14A—C13A106.4 (5)C15C—C14C—C13C106.9 (6)
C15A—C14A—H14A126.8C15C—C14C—H14C126.6
C13A—C14A—H14A126.8C13C—C14C—H14C126.6
C14A—C15A—O6A111.0 (5)C14C—C15C—O6C110.9 (5)
C14A—C15A—H15A124.5C14C—C15C—H15B124.5
O6A—C15A—H15A124.5O6C—C15C—H15B124.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1A—H1···Cg10.932.703.478 (6)142

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2637).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Jermy, B. R. & Pandurangan, A. (2005). Appl. Catal. A, 295, 185–192.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography