PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2140.
Published online 2008 October 18. doi:  10.1107/S1600536808033369
PMCID: PMC2959541

6,6′-Dibromo-2,2′-dihex­yloxy-1,1′-bi­naphthalene

Abstract

The title compound, C32H36Br2O2, was prepared by the reaction of 6-bromo-1-(2-bromo-6-hydroxy­naphthalen-5-yl)­naphthalen-2-ol and 1-iodo­hexane. The dihedral angle between the naphthalene ring planes is 63.8 (9)° The crystal structure may be stabilized by two very weak π–π inter­actions involving the six-membered rings, with centroid–centroid distances of 4.012 (4) and 4.010 (4) Å. The crystal studied was an inversion twin.

Related literature

For applications of 6,6′-dibromo-1,1′-bi-2-naphthol derivatives, see: Hu et al. (1996 [triangle]). For bond-length data, see: Vannes & Vos (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2140-scheme1.jpg

Experimental

Crystal data

  • C32H36Br2O2
  • M r = 612.43
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2140-efi1.jpg
  • a = 12.401 (3) Å
  • b = 8.1742 (16) Å
  • c = 27.396 (6) Å
  • V = 2777.1 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.95 mm−1
  • T = 293 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 26425 measured reflections
  • 3647 independent reflections
  • 3581 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.103
  • S = 0.91
  • 3647 reflections
  • 325 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 2766 Freidel pairs
  • Flack parameter: 0.49 (2)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033369/at2650sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033369/at2650Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

6,6'-Dibromo-1,1'-bi-2-naphthol derivatives have received considerable attention in the literature. They are attractive from several points of view in application (Hu et al., 1996). As part of our search for new 6,6'-dibromo-1,1'-bi-2-naphthol compounds we synthesized the title compound (I), and describe its structure here. The angle between the planes of the naphthalene rings is 60.1 (6)°.

The C17—C12 bond length of 1.504 (6)Å is comparable with C—C single bond [1.532 (4) Å] reported (van Nes et al., 1978). In the structure, there is no classcical hydrogen bonds. The crystal structure is stabilized by weak π-π interactions involving the six-membered rings (Cg1: C7-C12) and (Cg4î: C18-C26) [ (i) 1/2 + x, 3/2 - y, z], and the other six-membered six-membered rings (Cg2: C10-C16) and (Cg3î: C17-C22) rings, with centroid-centroid distances of 4.012 (4) \%A and 4.010 (4) Å, respectively.

Experimental

A mixture of the 6-bromo-1-(2-bromo-6-hydroxynaphthalen-5-yl) naphthalen-2-ol (0.1 mol), and 1-iodohexane (0.22 mol) was stirred in refluxing acetone/K2CO3 mixture (20 mL) for 4 h to afford the title compound (0.086 mol, yield 86%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93 - 0.97 Å, and with Uiso=1.2–1.5Ueq(C,N).

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C32H36Br2O2F(000) = 1256
Mr = 612.43Dx = 1.465 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1536 reflections
a = 12.401 (3) Åθ = 2.5–23.6°
b = 8.1742 (16) ŵ = 2.95 mm1
c = 27.396 (6) ÅT = 293 K
V = 2777.1 (10) Å3Block, yellow
Z = 40.25 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer3581 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
graphiteθmax = 27.5°, θmin = 1.5°
[var phi] and ω scansh = −16→16
26425 measured reflectionsk = −10→10
3647 independent reflectionsl = −35→35

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.103w = 1/[σ2(Fo2) + (0.031P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.002
3647 reflectionsΔρmax = 0.53 e Å3
325 parametersΔρmin = −0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 2766 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.49 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.72348 (8)0.71557 (12)0.21977 (2)0.0350 (2)
Br20.02939 (8)0.71401 (13)0.52428 (2)0.0354 (2)
C250.2283 (6)0.7910 (11)0.4792 (4)0.0289 (19)
H25A0.25820.73530.50550.035*
O10.4163 (4)1.1960 (8)0.4440 (2)0.0311 (12)
O20.3351 (4)1.1966 (8)0.2989 (2)0.0314 (12)
C300.5435 (7)1.2962 (13)0.1715 (4)0.0310 (19)
H30A0.58451.37630.18990.037*
H30B0.50451.35410.14610.037*
C140.5233 (6)0.7941 (12)0.2653 (4)0.0297 (19)
H14A0.49270.73900.23900.036*
C30.2086 (7)1.2922 (12)0.5727 (4)0.031 (2)
H3A0.24691.34900.59860.037*
H3B0.16631.37270.55520.037*
C60.4604 (9)1.2618 (8)0.4870 (4)0.019 (2)
H6A0.51391.34410.47890.022*
H6B0.49561.17610.50560.022*
C240.1149 (5)0.8051 (10)0.4732 (3)0.0267 (16)
C270.2915 (10)1.2656 (11)0.2526 (5)0.040 (3)
H27A0.23711.34750.25950.048*
H27B0.25911.17980.23300.048*
C80.5971 (6)1.1092 (9)0.4195 (3)0.0295 (17)
H8A0.62771.16010.44650.035*
C160.6830 (5)0.8758 (9)0.3093 (3)0.0272 (16)
H16A0.75770.87740.31240.033*
C100.6174 (5)0.9496 (9)0.3456 (3)0.0223 (16)
C150.6363 (5)0.8027 (11)0.2699 (3)0.0253 (15)
C110.5035 (5)0.9499 (8)0.3400 (3)0.0226 (15)
C290.4653 (8)1.2176 (11)0.2043 (4)0.038 (2)
H29A0.50391.16410.23060.046*
H29B0.42621.13420.18640.046*
C40.2923 (7)1.2171 (10)0.5372 (3)0.0260 (19)
H4A0.33191.13200.55420.031*
H4B0.25431.16620.51020.031*
C190.1345 (6)0.9496 (9)0.3975 (3)0.0257 (17)
C220.2678 (6)1.1123 (8)0.3292 (2)0.0258 (16)
C170.3157 (5)1.0338 (9)0.3686 (3)0.0260 (17)
C230.0695 (5)0.8747 (9)0.4339 (3)0.0275 (16)
H23A−0.00510.87390.43050.033*
C320.7062 (12)1.2663 (12)0.1191 (6)0.051 (4)
H32A0.75541.18900.10500.076*
H32B0.74501.33860.14050.076*
H32C0.67251.32880.09370.076*
C120.4362 (5)1.0324 (9)0.3741 (2)0.0236 (17)
C280.3838 (5)1.3404 (8)0.2262 (3)0.0317 (17)
H28A0.42201.41190.24850.038*
H28B0.35561.40780.20000.038*
C90.6621 (6)1.0310 (10)0.3865 (3)0.0292 (18)
H9A0.73641.03140.39110.035*
C180.2499 (5)0.9489 (9)0.4030 (3)0.0228 (15)
C200.0909 (6)1.0301 (9)0.3560 (3)0.0270 (18)
H20A0.01661.02900.35130.032*
C70.4848 (6)1.1134 (8)0.4131 (2)0.0248 (16)
C210.1543 (6)1.1093 (9)0.3226 (3)0.0295 (17)
H21A0.12321.16070.29580.035*
C50.3706 (5)1.3383 (8)0.5173 (3)0.0321 (17)
H5A0.40261.39810.54420.038*
H5B0.33191.41630.49720.038*
C130.4596 (6)0.8659 (8)0.2989 (2)0.0284 (16)
H13A0.38510.86050.29520.034*
C260.2926 (6)0.8645 (8)0.4437 (2)0.0273 (16)
H26A0.36710.85780.44700.033*
C310.6215 (6)1.1766 (9)0.1477 (3)0.0332 (18)
H31A0.65571.11060.17270.040*
H31B0.58211.10400.12610.040*
C20.1328 (6)1.1696 (10)0.5956 (3)0.0362 (19)
H2A0.17401.09510.61590.043*
H2B0.09881.10590.57010.043*
C10.0439 (10)1.2518 (8)0.6272 (6)0.033 (3)
H1A−0.00081.16900.64170.049*
H1B0.00051.32160.60700.049*
H1C0.07701.31570.65250.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0306 (5)0.0454 (4)0.0291 (5)0.0060 (5)0.0042 (4)0.0017 (9)
Br20.0305 (5)0.0448 (4)0.0308 (5)−0.0055 (5)0.0024 (4)0.0072 (9)
C250.027 (4)0.029 (4)0.031 (5)0.000 (4)−0.004 (3)−0.006 (5)
O10.026 (3)0.046 (3)0.022 (3)0.003 (3)−0.003 (2)−0.007 (3)
O20.027 (3)0.041 (3)0.026 (3)−0.002 (3)−0.004 (2)0.010 (3)
C300.033 (5)0.034 (4)0.026 (5)0.000 (5)−0.005 (3)−0.005 (5)
C140.033 (5)0.034 (4)0.022 (5)0.000 (4)−0.003 (3)−0.007 (5)
C30.031 (5)0.032 (4)0.030 (5)0.006 (4)0.001 (3)−0.010 (5)
C60.024 (5)0.024 (5)0.008 (4)−0.003 (3)0.002 (3)0.000 (3)
C240.028 (4)0.023 (4)0.029 (4)−0.004 (4)0.004 (3)−0.006 (4)
C270.041 (7)0.042 (6)0.037 (7)0.009 (4)−0.009 (5)0.013 (4)
C80.029 (4)0.037 (5)0.022 (4)−0.004 (3)−0.003 (3)0.000 (3)
C160.018 (3)0.033 (4)0.031 (4)0.000 (3)−0.002 (3)0.007 (3)
C100.016 (4)0.029 (4)0.021 (4)−0.001 (3)−0.001 (3)0.009 (3)
C150.027 (4)0.029 (4)0.020 (4)0.004 (4)0.006 (3)−0.002 (4)
C110.023 (4)0.022 (4)0.022 (4)−0.001 (3)−0.004 (3)0.003 (3)
C290.043 (5)0.026 (4)0.046 (6)0.010 (5)−0.017 (4)−0.005 (5)
C40.025 (4)0.032 (4)0.021 (4)0.008 (4)0.010 (3)−0.010 (4)
C190.027 (4)0.024 (4)0.026 (4)0.002 (3)−0.005 (3)−0.006 (3)
C220.026 (4)0.028 (4)0.023 (4)0.008 (3)−0.007 (4)−0.003 (3)
C170.022 (4)0.032 (4)0.024 (4)0.001 (3)0.001 (3)−0.005 (3)
C230.020 (3)0.035 (4)0.028 (4)−0.003 (3)0.005 (3)−0.008 (3)
C320.050 (9)0.073 (10)0.030 (7)0.007 (5)−0.008 (6)−0.001 (5)
C120.019 (4)0.032 (4)0.020 (4)−0.001 (3)−0.005 (3)0.004 (3)
C280.036 (4)0.036 (4)0.022 (4)−0.002 (3)−0.008 (4)0.007 (3)
C90.021 (4)0.039 (5)0.028 (5)0.000 (3)−0.004 (3)0.004 (4)
C180.017 (3)0.031 (4)0.020 (4)0.005 (3)−0.001 (3)−0.006 (3)
C200.022 (4)0.034 (5)0.026 (5)0.004 (3)−0.003 (3)−0.004 (4)
C70.031 (4)0.023 (4)0.020 (3)0.004 (3)0.001 (3)0.001 (3)
C210.025 (4)0.036 (5)0.027 (4)0.002 (3)−0.007 (3)−0.003 (3)
C50.032 (4)0.031 (4)0.033 (4)0.002 (3)0.004 (4)−0.004 (4)
C130.020 (3)0.033 (4)0.032 (4)−0.002 (3)−0.003 (3)0.006 (3)
C260.024 (4)0.031 (4)0.027 (4)0.001 (3)−0.005 (3)−0.004 (3)
C310.037 (4)0.028 (5)0.035 (5)−0.003 (3)−0.007 (4)0.001 (3)
C20.033 (4)0.045 (6)0.030 (5)0.003 (3)0.003 (3)−0.003 (4)
C10.035 (7)0.021 (7)0.043 (8)−0.001 (3)0.011 (6)−0.005 (3)

Geometric parameters (Å, °)

Br1—C151.887 (7)C29—H29A0.9700
Br2—C241.907 (8)C29—H29B0.9700
C25—C261.393 (12)C4—C51.491 (11)
C25—C241.421 (10)C4—H4A0.9700
C25—H25A0.9300C4—H4B0.9700
O1—C71.377 (8)C19—C201.420 (9)
O1—C61.406 (12)C19—C231.422 (9)
O2—C221.363 (8)C19—C181.438 (9)
O2—C271.491 (14)C22—C171.388 (9)
C30—C291.470 (14)C22—C211.420 (11)
C30—C311.522 (12)C17—C181.427 (9)
C30—H30A0.9700C17—C121.503 (6)
C30—H30B0.9700C23—H23A0.9300
C14—C131.349 (11)C32—C311.501 (15)
C14—C151.408 (10)C32—H32A0.9600
C14—H14A0.9300C32—H32B0.9600
C3—C21.510 (11)C32—H32C0.9600
C3—C41.550 (12)C12—C71.393 (9)
C3—H3A0.9700C28—H28A0.9700
C3—H3B0.9700C28—H28B0.9700
C6—C51.524 (12)C9—H9A0.9300
C6—H6A0.9700C18—C261.415 (9)
C6—H6B0.9700C20—C211.368 (10)
C24—C231.342 (10)C20—H20A0.9300
C27—C281.485 (14)C21—H21A0.9300
C27—H27A0.9700C5—H5A0.9700
C27—H27B0.9700C5—H5B0.9700
C8—C91.368 (10)C13—H13A0.9300
C8—C71.404 (11)C26—H26A0.9300
C8—H8A0.9300C31—H31A0.9700
C16—C151.364 (10)C31—H31B0.9700
C16—C101.419 (10)C2—C11.554 (14)
C16—H16A0.9300C2—H2A0.9700
C10—C91.417 (9)C2—H2B0.9700
C10—C111.420 (9)C1—H1A0.9600
C11—C121.423 (9)C1—H1B0.9600
C11—C131.427 (9)C1—H1C0.9600
C29—C281.546 (11)
C26—C25—C24116.8 (8)C17—C22—C21121.0 (6)
C26—C25—H25A121.6C22—C17—C18119.6 (6)
C24—C25—H25A121.6C22—C17—C12120.5 (6)
C7—O1—C6117.6 (6)C18—C17—C12119.9 (6)
C22—O2—C27119.2 (7)C24—C23—C19120.5 (7)
C29—C30—C31113.6 (8)C24—C23—H23A119.7
C29—C30—H30A108.8C19—C23—H23A119.7
C31—C30—H30A108.8C31—C32—H32A109.5
C29—C30—H30B108.8C31—C32—H32B109.5
C31—C30—H30B108.8H32A—C32—H32B109.5
H30A—C30—H30B107.7C31—C32—H32C109.5
C13—C14—C15120.0 (8)H32A—C32—H32C109.5
C13—C14—H14A120.0H32B—C32—H32C109.5
C15—C14—H14A120.0C7—C12—C11118.3 (6)
C2—C3—C4114.5 (8)C7—C12—C17120.3 (6)
C2—C3—H3A108.6C11—C12—C17121.4 (6)
C4—C3—H3A108.6C27—C28—C29115.2 (7)
C2—C3—H3B108.6C27—C28—H28A108.5
C4—C3—H3B108.6C29—C28—H28A108.5
H3A—C3—H3B107.6C27—C28—H28B108.5
O1—C6—C5109.2 (8)C29—C28—H28B108.5
O1—C6—H6A109.8H28A—C28—H28B107.5
C5—C6—H6A109.8C8—C9—C10120.8 (7)
O1—C6—H6B109.8C8—C9—H9A119.6
C5—C6—H6B109.8C10—C9—H9A119.6
H6A—C6—H6B108.3C26—C18—C17123.0 (6)
C23—C24—C25122.8 (8)C26—C18—C19117.2 (7)
C23—C24—Br2121.4 (5)C17—C18—C19119.8 (6)
C25—C24—Br2115.8 (6)C21—C20—C19122.3 (7)
O2—C27—C28107.0 (9)C21—C20—H20A118.8
O2—C27—H27A110.3C19—C20—H20A118.8
C28—C27—H27A110.3O1—C7—C12115.9 (6)
O2—C27—H27B110.3O1—C7—C8123.1 (6)
C28—C27—H27B110.3C12—C7—C8120.9 (6)
H27A—C27—H27B108.6C20—C21—C22119.5 (7)
C9—C8—C7120.8 (7)C20—C21—H21A120.2
C9—C8—H8A119.6C22—C21—H21A120.2
C7—C8—H8A119.6C4—C5—C6113.7 (6)
C15—C16—C10119.8 (6)C4—C5—H5A108.8
C15—C16—H16A120.1C6—C5—H5A108.8
C10—C16—H16A120.1C4—C5—H5B108.8
C9—C10—C16122.0 (6)C6—C5—H5B108.8
C9—C10—C11118.2 (7)H5A—C5—H5B107.7
C16—C10—C11119.7 (6)C14—C13—C11121.7 (7)
C16—C15—C14121.0 (7)C14—C13—H13A119.2
C16—C15—Br1119.9 (5)C11—C13—H13A119.2
C14—C15—Br1119.1 (6)C25—C26—C18123.1 (7)
C10—C11—C12120.9 (6)C25—C26—H26A118.5
C10—C11—C13117.6 (7)C18—C26—H26A118.5
C12—C11—C13121.5 (6)C32—C31—C30110.8 (8)
C30—C29—C28112.6 (8)C32—C31—H31A109.5
C30—C29—H29A109.1C30—C31—H31A109.5
C28—C29—H29A109.1C32—C31—H31B109.5
C30—C29—H29B109.1C30—C31—H31B109.5
C28—C29—H29B109.1H31A—C31—H31B108.1
H29A—C29—H29B107.8C3—C2—C1112.7 (7)
C5—C4—C3113.8 (7)C3—C2—H2A109.0
C5—C4—H4A108.8C1—C2—H2A109.0
C3—C4—H4A108.8C3—C2—H2B109.0
C5—C4—H4B108.8C1—C2—H2B109.0
C3—C4—H4B108.8H2A—C2—H2B107.8
H4A—C4—H4B107.7C2—C1—H1A109.5
C20—C19—C23123.0 (6)C2—C1—H1B109.5
C20—C19—C18117.7 (7)H1A—C1—H1B109.5
C23—C19—C18119.2 (7)C2—C1—H1C109.5
O2—C22—C17116.4 (6)H1A—C1—H1C109.5
O2—C22—C21122.6 (6)H1B—C1—H1C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2650).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hu, Q.-S., Vitharana, D., Zheng, X.-F., Wu, C., Kwan, C. M. S. & Pu, L. (1996). J. Org. Chem.61, 8370–8377.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vannes, G. J. H. & Vos, A. (1978). Acta Cryst. B34, 1947–1956.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography