PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2209.
Published online 2008 October 25. doi:  10.1107/S1600536808034478
PMCID: PMC2959534

N-Cyclo­hexyl-3-fluoro­benzamide

Abstract

In the title mol­ecule, C13H16FNO, the amide (N—C=O) plane is oriented at an angle of 29.9 (2)° with respect to the aromatic ring. The cyclo­hexane ring adopts the usual chair conformation. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains along [100]. A weak C—H(...)F inter­action is also observed. The F atom is disordered over two positions with occupancy factors of 0.873 (3) and 0.127 (3).

Related literature

For related structures, see: Chopra & Guru Row (2005 [triangle]); Saeed et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2209-scheme1.jpg

Experimental

Crystal data

  • C13H16FNO
  • M r = 221.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2209-efi1.jpg
  • a = 5.267 (3) Å
  • b = 6.599 (4) Å
  • c = 16.755 (9) Å
  • β = 90.090 (17)°
  • V = 582.4 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 120 (2) K
  • 0.45 × 0.40 × 0.21 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.962, T max = 0.978
  • 5071 measured reflections
  • 1492 independent reflections
  • 1420 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.098
  • S = 1.05
  • 1492 reflections
  • 150 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034478/ci2689sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034478/ci2689Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NA is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme.

supplementary crystallographic information

Comment

The background to this study has been described in an earlier paper (Saeed et al., 2008b).

The molecular structure of the title compound is related to that of the 2,4-dichloro compound (Saeed et al., 2008a). The cyclohexane ring is in the most stable chair conformation. In general, bond lengths and angles are within normal ranges. The aromatic ring C2–C7 is oriented with respect to the N1/O1/C1 plane at a dihedral angle of 29.9 (2)°. The N1–C1–C2–C7 torsion angle is 150.37 (15)°, for the reported dichloro compound the corresponding angle is 130.16 (18)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the [100] direction (Fig. 2), in which they may be effective in the stabilization of the structure. Another intermolecular interaction is C—H···F (Table 1), as found in 4-fluoro-N-(2-fluorophenyl)benzamide (Chopra & Row, 2005).

Experimental

3,5-Difluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with cyclohexylamine (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%). Analysis calculated for C13H15F2NO: C 65.26, H 6.32, N 5.85%; found: C 65.31, H 6.39, N 5.77%.

Refinement

The F atom is disordered over two positions (F1 and F2) with site occupation factors of 0.873 (3) for F1 and 0.127 (3) for F2. H atoms were initially located in difference syntheses, but were then included in the refinement, at calculated positions, in the riding-model approximation, with N—H = 0.88 Å and C—H = 0.95–1.00 Å. The isotropic displacement parameters were set equal to 1.2Ueq of the carrier atom. In the absence of significant anomalous scattering effects, the Friedel pairs were merged.

Figures

Fig. 1.
Molecular structure of title compound, showing the rotational disorder of the fluorophenyl ring. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing viewed along [100] with intermolecular N–H···O hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C13H16FNOF(000) = 236
Mr = 221.27Dx = 1.262 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 796 reflections
a = 5.267 (3) Åθ = 2.4–28.3°
b = 6.599 (4) ŵ = 0.09 mm1
c = 16.755 (9) ÅT = 120 K
β = 90.090 (17)°Prism, colourless
V = 582.4 (6) Å30.45 × 0.40 × 0.21 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer1492 independent reflections
Radiation source: sealed tube1420 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −6→6
Tmin = 0.962, Tmax = 0.978k = −8→8
5071 measured reflectionsl = −22→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0686P)2 + 0.0394P] where P = (Fo2 + 2Fc2)/3
1492 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
F10.9633 (3)0.6562 (2)0.49344 (8)0.0376 (4)0.873 (3)
F20.249 (2)0.9837 (17)0.3846 (6)0.043 (3)*0.127 (3)
O10.2561 (2)0.2922 (2)0.25636 (8)0.0316 (3)
N10.6841 (3)0.2208 (2)0.25218 (8)0.0206 (3)
H1A0.83560.25050.27100.025*
C10.4794 (3)0.3278 (2)0.27778 (10)0.0208 (3)
C20.5341 (3)0.5002 (2)0.33504 (9)0.0198 (3)
C30.7409 (3)0.4971 (3)0.38818 (10)0.0229 (3)
H3A0.85560.38600.38940.027*
C40.7720 (3)0.6615 (3)0.43877 (10)0.0269 (4)
H4A0.90800.65910.47600.032*0.127 (3)
C50.6128 (4)0.8300 (3)0.43745 (10)0.0288 (4)
H5A0.64190.94160.47210.035*
C60.4084 (4)0.8306 (3)0.38366 (11)0.0295 (4)
H6A0.29730.94390.38170.035*0.873 (3)
C70.3671 (3)0.6659 (3)0.33314 (10)0.0253 (4)
H7A0.22650.66580.29760.030*
C80.6571 (3)0.0567 (2)0.19365 (9)0.0195 (3)
H8A0.4853−0.00540.20030.023*
C90.6786 (4)0.1391 (3)0.10784 (10)0.0275 (4)
H9A0.54310.24030.09840.033*
H9B0.84450.20740.10110.033*
C100.6542 (4)−0.0336 (3)0.04667 (10)0.0299 (4)
H10A0.4813−0.09200.04970.036*
H10B0.67810.0216−0.00780.036*
C110.8501 (4)−0.2007 (3)0.06182 (11)0.0291 (4)
H11A1.0228−0.14660.05240.035*
H11B0.8212−0.31360.02400.035*
C120.8313 (4)−0.2802 (3)0.14799 (11)0.0272 (4)
H12A0.6653−0.34800.15550.033*
H12B0.9664−0.38180.15730.033*
C130.8582 (3)−0.1078 (3)0.20882 (11)0.0232 (3)
H13A1.0299−0.04760.20470.028*
H13B0.8379−0.16240.26350.028*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0405 (8)0.0402 (7)0.0322 (7)−0.0017 (6)−0.0107 (5)−0.0067 (6)
O10.0177 (6)0.0310 (7)0.0460 (8)0.0009 (5)−0.0028 (5)−0.0113 (6)
N10.0172 (6)0.0198 (6)0.0247 (7)0.0003 (5)−0.0015 (5)−0.0024 (5)
C10.0197 (8)0.0181 (7)0.0246 (7)0.0002 (6)0.0004 (6)−0.0004 (6)
C20.0197 (8)0.0180 (7)0.0217 (7)−0.0015 (6)0.0045 (6)0.0002 (6)
C30.0231 (8)0.0221 (7)0.0235 (7)0.0014 (6)0.0018 (6)0.0010 (6)
C40.0270 (9)0.0306 (9)0.0229 (8)−0.0040 (7)0.0018 (6)−0.0012 (7)
C50.0314 (9)0.0259 (9)0.0292 (8)−0.0041 (7)0.0075 (7)−0.0081 (8)
C60.0268 (9)0.0233 (8)0.0385 (9)0.0044 (7)0.0076 (7)−0.0052 (8)
C70.0214 (8)0.0253 (8)0.0293 (8)0.0023 (7)0.0013 (6)−0.0015 (7)
C80.0169 (7)0.0173 (7)0.0243 (8)−0.0005 (6)−0.0003 (6)−0.0017 (6)
C90.0376 (10)0.0205 (8)0.0242 (8)0.0018 (7)−0.0026 (7)0.0000 (6)
C100.0367 (10)0.0281 (9)0.0250 (8)−0.0007 (8)−0.0034 (7)−0.0043 (7)
C110.0290 (9)0.0249 (8)0.0334 (9)−0.0032 (8)0.0051 (7)−0.0085 (8)
C120.0284 (9)0.0177 (8)0.0356 (9)0.0023 (7)−0.0016 (7)−0.0027 (7)
C130.0221 (8)0.0192 (8)0.0285 (8)0.0014 (6)−0.0010 (6)−0.0003 (6)

Geometric parameters (Å, °)

F1—C41.361 (2)C8—C131.538 (2)
F2—C61.315 (11)C8—C91.541 (2)
O1—C11.252 (2)C8—H8A1.00
N1—C11.359 (2)C9—C101.538 (2)
N1—C81.468 (2)C9—H9A0.99
N1—H1A0.88C9—H9B0.99
C1—C21.515 (2)C10—C111.531 (3)
C2—C71.404 (2)C10—H10A0.99
C2—C31.406 (2)C10—H10B0.99
C3—C41.386 (3)C11—C121.540 (3)
C3—H3A0.95C11—H11A0.99
C4—C51.393 (3)C11—H11B0.99
C4—H4A0.95C12—C131.534 (2)
C5—C61.403 (3)C12—H12A0.99
C5—H5A0.95C12—H12B0.99
C6—C71.394 (3)C13—H13A0.99
C6—H6A0.95C13—H13B0.99
C7—H7A0.95
C1—N1—C8121.23 (14)C13—C8—H8A108.4
C1—N1—H1A119.4C9—C8—H8A108.4
C8—N1—H1A119.4C10—C9—C8110.76 (15)
O1—C1—N1123.89 (15)C10—C9—H9A109.5
O1—C1—C2120.02 (14)C8—C9—H9A109.5
N1—C1—C2116.09 (14)C10—C9—H9B109.5
C7—C2—C3120.72 (15)C8—C9—H9B109.5
C7—C2—C1116.85 (14)H9A—C9—H9B108.1
C3—C2—C1122.42 (15)C11—C10—C9111.55 (14)
C4—C3—C2117.78 (16)C11—C10—H10A109.3
C4—C3—H3A121.1C9—C10—H10A109.3
C2—C3—H3A121.1C11—C10—H10B109.3
F1—C4—C3118.55 (17)C9—C10—H10B109.3
F1—C4—C5118.43 (16)H10A—C10—H10B108.0
C3—C4—C5123.00 (16)C10—C11—C12110.90 (15)
C3—C4—H4A118.5C10—C11—H11A109.5
C5—C4—H4A118.5C12—C11—H11A109.5
C4—C5—C6118.30 (16)C10—C11—H11B109.5
C4—C5—H5A120.9C12—C11—H11B109.5
C6—C5—H5A120.9H11A—C11—H11B108.0
F2—C6—C7120.5 (5)C13—C12—C11111.33 (15)
F2—C6—C5119.0 (5)C13—C12—H12A109.4
C7—C6—C5120.42 (16)C11—C12—H12A109.4
C7—C6—H6A119.8C13—C12—H12B109.4
C5—C6—H6A119.8C11—C12—H12B109.4
C6—C7—C2119.75 (15)H12A—C12—H12B108.0
C6—C7—H7A120.1C12—C13—C8110.55 (13)
C2—C7—H7A120.1C12—C13—H13A109.5
N1—C8—C13110.16 (13)C8—C13—H13A109.5
N1—C8—C9110.86 (13)C12—C13—H13B109.5
C13—C8—C9110.58 (13)C8—C13—H13B109.5
N1—C8—H8A108.4H13A—C13—H13B108.1
C8—N1—C1—O12.5 (2)F2—C6—C7—C2−177.6 (5)
C8—N1—C1—C2−177.01 (13)C5—C6—C7—C2−1.2 (3)
O1—C1—C2—C7−29.1 (2)C3—C2—C7—C60.9 (2)
N1—C1—C2—C7150.37 (15)C1—C2—C7—C6−179.27 (15)
O1—C1—C2—C3150.71 (16)C1—N1—C8—C13−148.28 (15)
N1—C1—C2—C3−29.8 (2)C1—N1—C8—C989.00 (18)
C7—C2—C3—C40.6 (2)N1—C8—C9—C10179.17 (14)
C1—C2—C3—C4−179.20 (14)C13—C8—C9—C1056.69 (18)
C2—C3—C4—F1176.62 (15)C8—C9—C10—C11−55.8 (2)
C2—C3—C4—C5−1.9 (3)C9—C10—C11—C1255.0 (2)
F1—C4—C5—C6−176.95 (16)C10—C11—C12—C13−55.56 (19)
C3—C4—C5—C61.6 (3)C11—C12—C13—C856.76 (19)
C4—C5—C6—F2176.4 (6)N1—C8—C13—C12179.90 (13)
C4—C5—C6—C70.1 (3)C9—C8—C13—C12−57.21 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.253.050 (2)152
C5—H5A···F1ii0.952.583.310 (3)134

Symmetry codes: (i) x+1, y, z; (ii) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2689).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chopra, D. & Guru Row, T. N. (2005). Cryst. Growth Des.5, 1679–1681.
  • Saeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008a). Acta Cryst. E64, o773. [PMC free article] [PubMed]
  • Saeed, A., Khera, R. A., Batool, M., Shaheen, U. & Flörke, U. (2008b). Acta Cryst. E64, o1625. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography