PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): i75.
Published online 2008 October 18. doi:  10.1107/S160053680803287X
PMCID: PMC2959528

K2Ho(PO4)(WO4)

Abstract

A new compound, dipotassium holmium(III) phosphate(V) tungstate(VI), K2Ho(PO4)(WO4), has been obtained during investigation of the K2O–P2O5–WO3–HoF3 phase system using the flux technique. The compound is isotypic with K2Bi(PO4)(WO4). Its framework structure consists of flat 2[HoPO4] layers parallel to (100) that are made up of 1[HoO8] zigzag chains inter­linked via slightly distorted PO4 tetra­hedra. WO4 tetra­hedra are attached above and below these layers, leaving space for the K+ counter-cations. The HoO8, PO4 and WO4 units exhibit 2 symmetry.

Related literature

For related structures, see: Ben Amara & Dabbabi (1987 [triangle]); Marsh (1987 [triangle]); Zatovsky, Terebilenko, Slobodyanik & Baumer (2006 [triangle]); Zatovsky, Terebilenko, Slobodyanik, Baumer & Shishkin (2006 [triangle]).

Experimental

Crystal data

  • K2Ho(PO4)(WO4)
  • M r = 585.95
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i75-efi1.jpg
  • a = 6.8820 (10) Å
  • b = 12.1485 (18) Å
  • c = 19.695 (3) Å
  • V = 1646.6 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 24.72 mm−1
  • T = 293 (2) K
  • 0.10 × 0.09 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur-3 CCD diffractometer
  • Absorption correction: multi-scan based on the method by Blessing (1995 [triangle]) T min = 0.102, T max = 0.177
  • 8608 measured reflections
  • 1561 independent reflections
  • 1257 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.071
  • S = 1.15
  • 1561 reflections
  • 62 parameters
  • Δρmax = 1.90 e Å−3
  • Δρmin = −1.73 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803287X/wm2196sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803287X/wm2196Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the ICDD for financial support (grant No. 03-02).

supplementary crystallographic information

Comment

The co-existence of different anionic units in crystal structures represents an interesting field of investigation. One of the first structural examples of a combination of PO4 with MoO4/WO4 tetrahedra, viz. Na2Y(MoO4)(PO4), was reported to be monoclinic with space group C2/c (Ben Amara & Dabbabi, 1987). Later this structure was reinvestigated and described as orthorhombic, space group Ibca (Marsh, 1987). Recently, the compounds K2Bi(PO4)(MO4) (M=Mo, W) with isotypic structures were obtained by application of the flux method (Zatovsky, Terebilenko, Slobodyanik & Baumer, 2006; Zatovsky, Terebilenko, Slobodyanik, Baumer & Shishkin, 2006). Herein, we report the flux synthesis and crystal structure of a new member of the A2B(PO4)(AO4) (A = Na, K; B = lanthanide, Y, Bi; M = Mo, W) family.

One of the characteristic features of this structure type is the "segregation" of slightly distorted PO4 and WO4 tetrahedra into adjacent layers (Fig. 1). The first layer with composition 2[HoPO4] contains 1[HoO8] zigzag chains (Fig. 2). The connection between neighboring chains is achieved via PO4 tetrahedra. On the top and on the bottom of the 2[HoPO4] layer, WO4 tetrahedra are attached. All [HoO8], PO4 and WO4 units exhibit 2 symmetry with bond lengths in the typical ranges (Table 1). The K+ cations are situated in the resulting interlayer space and are surrounded by 8 oxygen atoms with K—O bond lengths ranging from 2.683 (4) Å to 3.133 (4) Å.

Experimental

Single crystals of the title compound were grown from a multicomponent high-temperature solution. A mixture of 4.645 g K2W2O7, 0.865 g KPO3, and 1.150 g K4P2O7 was heated in a platinum crucible up to 1173 K which is above the melting temperature. Then 0.200 g of HoF3 were added to this melt under stirring. The final mixture was held at this temperature for 1 h and cooled down to room temperature with a rate of 30 Kh-1. The solidified melt was leached out with warm water to dissolve the superfluous flux. The final product consisted of beige needle-like crystals with a maximum length of up to 5 mm.

Refinement

The highest peak and the deepest hole of the final Fourier map are located 0.58 Å from atom W1 and 1.11 Å from the same atom, respectively.

Figures

Fig. 1.
The layered structure of K2Ho(PO4)(WO4), leaving space where the K+ ions are located.
Fig. 2.
View of K2Ho(PO4)(WO4) with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1,5-x; y; 1-z; (ii) 1-x; 0.5-y; z].

Crystal data

K2Ho(PO4)(WO4)F(000) = 2064
Mr = 585.95Dx = 4.727 Mg m3
Orthorhombic, IbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2cCell parameters from 8608 reflections
a = 6.882 (1) Åθ = 3.4–33.0°
b = 12.1485 (18) ŵ = 24.72 mm1
c = 19.695 (3) ÅT = 293 K
V = 1646.6 (4) Å3Prism, pale beige
Z = 80.10 × 0.09 × 0.07 mm

Data collection

Oxford Diffraction XCalibur-3 CCD diffractometer1561 independent reflections
Radiation source: fine-focus sealed tube1257 reflections with I > 2σ(I)
graphiteRint = 0.055
[var phi] and ω scansθmax = 33.0°, θmin = 3.4°
Absorption correction: multi-scan based on the method by Blessing (1995)h = −10→10
Tmin = 0.102, Tmax = 0.177k = −18→18
8608 measured reflectionsl = −30→29

Refinement

Refinement on F20 restraints
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0397P)2 + 3.2575P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.071Δρmax = 1.90 e Å3
S = 1.15Δρmin = −1.73 e Å3
1561 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
62 parametersExtinction coefficient: 0.00010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
W10.50.250.334530 (12)0.01088 (5)
Ho10.750.325113 (17)0.50.00662 (5)
K10.96872 (15)0.07992 (10)0.34389 (5)0.0196 (2)
P10.750.07042 (10)0.50.0065 (2)
O10.7088 (4)0.2796 (3)0.38536 (17)0.0146 (7)
O20.4420 (6)0.3643 (4)0.2845 (2)0.0269 (8)
O30.7308 (4)−0.0047 (2)0.43834 (16)0.0102 (6)
O40.9229 (4)0.1514 (2)0.49215 (17)0.0105 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W10.01432 (9)0.01167 (9)0.00666 (9)−0.00095 (8)00
Ho10.00652 (9)0.00523 (9)0.00811 (10)0−0.00005 (9)0
K10.0204 (4)0.0248 (5)0.0137 (4)−0.0002 (4)0.0021 (3)0.0039 (4)
P10.0064 (5)0.0034 (5)0.0098 (6)00.0000 (5)0
O10.0154 (14)0.0171 (14)0.0113 (14)−0.0035 (11)−0.0012 (11)−0.0031 (11)
O20.0308 (17)0.0296 (19)0.0203 (17)−0.0008 (17)0.0013 (15)0.0126 (16)
O30.0126 (13)0.0079 (11)0.0101 (13)−0.0018 (10)−0.0002 (11)−0.0010 (9)
O40.0052 (10)0.0066 (11)0.0198 (16)−0.0017 (9)0.0011 (10)−0.0016 (11)

Geometric parameters (Å, °)

W1—O2i1.749 (4)Ho1—K1vii3.8119 (11)
W1—O21.749 (4)Ho1—K1vi3.8119 (12)
W1—O11.788 (3)K1—O32.683 (3)
W1—O1i1.788 (3)K1—O2v2.689 (4)
W1—K13.8352 (12)K1—O3x2.747 (3)
W1—K1i3.8352 (12)K1—O1vi2.916 (3)
W1—K1ii4.0181 (13)K1—O2xi2.934 (5)
W1—K1iii4.0181 (13)K1—O43.063 (3)
W1—K1iv4.0821 (12)K1—O13.122 (4)
W1—K1v4.0821 (12)K1—O2i3.133 (4)
Ho1—O4vi2.274 (3)K1—P13.4251 (11)
Ho1—O4vii2.274 (3)K1—Ho1vi3.8119 (11)
Ho1—O12.342 (3)K1—K1iii3.9511 (13)
Ho1—O1viii2.342 (3)P1—O31.525 (3)
Ho1—O3ix2.401 (3)P1—O3viii1.525 (3)
Ho1—O3ii2.401 (3)P1—O41.552 (3)
Ho1—O4viii2.428 (3)P1—O4viii1.552 (3)
Ho1—O42.428 (3)P1—Ho1xii2.9802 (13)
Ho1—P1ix2.9802 (13)P1—K1viii3.4251 (11)
Ho1—P13.0941 (13)
O2i—W1—O2111.4 (3)O3x—K1—O461.07 (8)
O2i—W1—O1106.94 (17)O1vi—K1—O469.23 (9)
O2—W1—O1109.83 (19)O2xi—K1—O4130.90 (10)
O2i—W1—O1i109.83 (19)O3—K1—O176.52 (9)
O2—W1—O1i106.94 (17)O2v—K1—O1100.44 (12)
O1—W1—O1i111.9 (2)O3x—K1—O1117.21 (9)
O4vi—Ho1—O4vii165.59 (15)O1vi—K1—O184.72 (10)
O4vi—Ho1—O194.81 (11)O2xi—K1—O1156.62 (10)
O4vii—Ho1—O188.59 (11)O4—K1—O158.09 (8)
O4vi—Ho1—O1viii88.59 (11)O3—K1—O2i77.94 (10)
O4vii—Ho1—O1viii94.81 (11)O2v—K1—O2i78.50 (9)
O1—Ho1—O1viii152.68 (18)O3x—K1—O2i156.48 (11)
O4vi—Ho1—O3ix88.91 (10)O1vi—K1—O2i131.64 (12)
O4vii—Ho1—O3ix78.65 (10)O2xi—K1—O2i103.49 (13)
O1—Ho1—O3ix133.18 (11)O4—K1—O2i101.64 (9)
O1viii—Ho1—O3ix73.88 (12)O1—K1—O2i54.04 (10)
O4vi—Ho1—O3ii78.65 (10)O3—P1—O3viii106.4 (2)
O4vii—Ho1—O3ii88.91 (10)O3—P1—O4111.52 (16)
O1—Ho1—O3ii73.88 (12)O3viii—P1—O4113.10 (16)
O1viii—Ho1—O3ii133.18 (12)O3—P1—O4viii113.10 (16)
O3ix—Ho1—O3ii61.17 (15)O3viii—P1—O4viii111.52 (16)
O4vi—Ho1—O4viii126.77 (7)O4—P1—O4viii101.3 (2)
O4vii—Ho1—O4viii67.63 (12)W1—O1—Ho1133.20 (16)
O1—Ho1—O4viii78.27 (12)W1—O1—K1vi124.93 (16)
O1viii—Ho1—O4viii78.03 (12)Ho1—O1—K1vi92.27 (11)
O3ix—Ho1—O4viii133.56 (10)W1—O1—K199.08 (14)
O3ii—Ho1—O4viii143.86 (10)Ho1—O1—K1111.49 (12)
O4vi—Ho1—O467.63 (12)K1vi—O1—K186.88 (9)
O4vii—Ho1—O4126.77 (8)W1—O2—K1v132.6 (2)
O1—Ho1—O478.03 (12)W1—O2—K1ii115.89 (19)
O1viii—Ho1—O478.27 (12)K1v—O2—K1ii95.86 (13)
O3ix—Ho1—O4143.86 (10)W1—O2—K1i99.64 (16)
O3ii—Ho1—O4133.56 (10)K1v—O2—K1i120.18 (15)
O4viii—Ho1—O459.26 (13)K1ii—O2—K1i81.21 (11)
O3—K1—O2v152.62 (12)P1—O3—Ho1xii96.20 (15)
O3—K1—O3x78.69 (8)P1—O3—K1105.64 (14)
O2v—K1—O3x124.78 (11)Ho1xii—O3—K1130.32 (12)
O3—K1—O1vi119.65 (10)P1—O3—K1iii142.66 (16)
O2v—K1—O1vi86.67 (12)Ho1xii—O3—K1iii95.30 (9)
O3x—K1—O1vi60.35 (9)K1—O3—K1iii93.37 (11)
O3—K1—O2xi93.55 (11)P1—O4—Ho1vi146.28 (18)
O2v—K1—O2xi78.59 (14)P1—O4—Ho199.72 (13)
O3x—K1—O2xi80.53 (10)Ho1vi—O4—Ho1111.83 (11)
O1vi—K1—O2xi118.34 (11)P1—O4—K189.66 (13)
O3—K1—O452.05 (8)Ho1vi—O4—K189.92 (10)
O2v—K1—O4148.06 (12)Ho1—O4—K1110.96 (11)

Symmetry codes: (i) −x+1, −y+1/2, z; (ii) −x+3/2, y+1/2, z; (iii) x−1/2, −y, z; (iv) x−1/2, y, −z+1/2; (v) −x+3/2, −y+1/2, −z+1/2; (vi) −x+2, −y+1/2, z; (vii) x−1/2, −y+1/2, −z+1; (viii) −x+3/2, y, −z+1; (ix) x, y+1/2, −z+1; (x) x+1/2, −y, z; (xi) −x+3/2, y−1/2, z; (xii) x, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2196).

References

  • Ben Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616–618.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Marsh, R. E. (1987). Acta Cryst. C43, 2470.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abington, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S. & Baumer, V. N. (2006). J. Solid State Chem.179, 3550–3555.
  • Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). Acta Cryst. E62, i193–i195.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography