PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2068.
Published online 2008 October 4. doi:  10.1107/S1600536808031218
PMCID: PMC2959524

3′,6′-Bis(diethyl­amino)-3H-spiro­[2-benzo­thio­phene-1,9′-xanthene]-3-thione

Abstract

The title compound, C28H30N2OS2, was obtained by thio­nation of 3′,6′-bis­(diethyl­amino)-3H-spiro­[isobenzofuran-1,9′-xan­thene]-3-one with 2,4-bis­(p-methoxy­phen­yl)-1,3-dithia­diphos­phetane disulfide (Lawesson’s reagent). The planes of the two benzene rings of the xanthene system are inclined at a dihedral angle of 17.4 (1)°, and the plane of the dithio­phthalide group and the planes through the two benzene rings of the xanthene system make dihedral angles of 80.2 (1) and 82.8 (1)°, respectively.

Related literature

For related literature, see: Sun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2068-scheme1.jpg

Experimental

Crystal data

  • C28H30N2OS2
  • M r = 474.66
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2068-efi1.jpg
  • a = 12.181 (4) Å
  • b = 13.455 (5) Å
  • c = 15.254 (5) Å
  • V = 2500.0 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 173 (2) K
  • 0.36 × 0.33 × 0.23 mm

Data collection

  • Bruker APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.920, T max = 0.948
  • 12588 measured reflections
  • 2498 independent reflections
  • 2114 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.136
  • S = 1.18
  • 2498 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031218/kj2093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031218/kj2093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NCET of Fujian Province and the National Natural Science Foundation of China (No. 20675067) for supporting this work. We also thank Mr S.-Y. Yang and Mr Z.-B. Wei for technical assistance.

supplementary crystallographic information

Comment

The determination of hypochlorous acid is very important in biological systems, but it is still a challenge for the design and synthesis of highly specific and sensitive probes for hypochlorous acid (Sun et al., 2008). We have therefore synthesized the title compound, and investigated its spectral responses to hypochlorous acid.

The title compound was prepared by refluxing of 3',6'-bis(diethylamino) -3H-spiro[isobenzofuran-1,9'-xanthene]-3-one with 2,4-di(p-methoxyphenyl)-1,3-dithiadiphosphetane disulfide (Lawesson's reagent) using benzene as the solvent under N2 atmosphere. An X-ray crystal structure determination of the molecular structure of title compound was carried out to determine its conformation. The planes of C1 / C6 and C14 / C19 rings make a dihedral angle of 80.2 (1)°, and the planes of C8 / C13 and C14 / C19 rings make a dihedral angle of 82.8 (1)°.

Experimental

3',6'-bis(diethylamino)-3H-spiro[isobenzofuran-1,9'-xanthene]-3-one (1.0 g, 2.3 mmol) and 2,4-di(p-methoxyphenyl)-1,3-dithiadiphosphetane disulfide (1.80 g, 4.6 mmol) were dissolved in dry benzene, and the reaction mixture was refluxed for 4 h under N2 atmosphere. After removal of benzene, the residue was purified by flash chromatography with dichloromethane / petroleum as eluent to afford the title compound as a white solid in 26% yield. Single crystals of were obtained by slow evaporation of a dichloromethane / acetonitrile solution (20:1 v/v).

Refinement

The hydrogen atoms were positioned geometrically (C—H = 0.93, 0.98, 0.97 or 0.96Å for phenyl, tertiary, methylene or methyl H atoms respectively) and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to 1.5Ueq(C), while those of other H atoms were set to 1.2Ueq(C). In the absence of significant anomalous scattering, Friedel pairs were merged.

Figures

Fig. 1.
A view of the molecular structure of the title compound with the atom-labelling scheme, showing 50% probability displacement ellipsoids.

Crystal data

C28H30N2OS2F(000) = 1008
Mr = 474.66Dx = 1.261 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3199 reflections
a = 12.181 (4) Åθ = 4.5–42.6°
b = 13.455 (5) ŵ = 0.24 mm1
c = 15.254 (5) ÅT = 173 K
V = 2500.0 (15) Å3Block, colorless
Z = 40.36 × 0.33 × 0.23 mm

Data collection

Bruker APEX area-detector diffractometer2498 independent reflections
Radiation source: fine-focus sealed tube2114 reflections with I > 2σ(I)
graphiteRint = 0.073
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −14→14
Tmin = 0.920, Tmax = 0.948k = −15→15
12588 measured reflectionsl = −18→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + (0.0662P)2] where P = (Fo2 + 2Fc2)/3
2498 reflections(Δ/σ)max = 0.003
298 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.18097 (9)0.90100 (7)0.96568 (7)0.0490 (3)
O10.3456 (2)0.65755 (17)0.94489 (16)0.0431 (6)
C10.3709 (3)0.7217 (2)0.8770 (2)0.0335 (8)
N10.0836 (3)0.4480 (2)1.0842 (2)0.0543 (9)
S20.03347 (14)1.07464 (9)0.95303 (13)0.1047 (6)
N20.6222 (2)0.7794 (2)0.75337 (19)0.0447 (8)
C20.4781 (3)0.7178 (2)0.8483 (2)0.0361 (9)
H20.52680.67320.87390.043*
C30.5144 (3)0.7802 (2)0.7811 (2)0.0373 (9)
C40.4354 (3)0.8420 (3)0.7425 (2)0.0427 (9)
H40.45510.88150.69510.051*
C50.3288 (3)0.8455 (2)0.7733 (2)0.0412 (9)
H50.27930.88860.74690.049*
C60.2932 (3)0.7864 (2)0.8429 (2)0.0363 (9)
C70.1800 (3)0.7946 (2)0.8827 (2)0.0374 (9)
C80.1525 (3)0.7008 (2)0.9302 (2)0.0353 (9)
C90.0457 (3)0.6738 (2)0.9530 (2)0.0411 (9)
H9−0.01200.71380.93430.049*
C100.0219 (3)0.5917 (2)1.0014 (2)0.0426 (9)
H10−0.05080.57651.01400.051*
C110.1058 (3)0.5296 (2)1.0326 (2)0.0383 (9)
C120.2144 (3)0.5551 (2)1.0098 (2)0.0397 (9)
H120.27250.51521.02810.048*
C130.2346 (3)0.6388 (2)0.9605 (2)0.0352 (8)
C140.0954 (3)0.8293 (3)0.8183 (2)0.0414 (9)
C150.0682 (3)0.7754 (3)0.7464 (2)0.0436 (10)
H150.09630.71170.73870.052*
C16−0.0025 (4)0.8164 (4)0.6842 (3)0.0723 (15)
H16−0.02170.77970.63490.087*
C17−0.0449 (4)0.9130 (4)0.6952 (3)0.0732 (15)
H17−0.08890.94140.65220.088*
C18−0.0212 (4)0.9629 (3)0.7680 (4)0.0721 (15)
H18−0.05191.02540.77700.087*
C190.0501 (3)0.9223 (3)0.8319 (3)0.0472 (10)
C200.0808 (4)0.9700 (3)0.9130 (3)0.0607 (13)
C21−0.0282 (3)0.4250 (3)1.1101 (3)0.0532 (11)
H21A−0.06450.48641.12640.064*
H21B−0.02570.38311.16180.064*
C22−0.0970 (4)0.3734 (3)1.0412 (4)0.0750 (15)
H22A−0.16920.36121.06410.112*
H22B−0.06330.31141.02560.112*
H22C−0.10220.41490.99010.112*
C230.1720 (4)0.3817 (3)1.1151 (3)0.0623 (13)
H23A0.23590.42141.12970.075*
H23B0.14800.34841.16820.075*
C240.2028 (5)0.3077 (4)1.0508 (3)0.0892 (18)
H24A0.26030.26671.07410.134*
H24B0.22830.34020.99860.134*
H24C0.14030.26721.03700.134*
C250.6586 (4)0.8446 (3)0.6825 (3)0.0505 (10)
H25A0.60550.84150.63510.061*
H25B0.72800.82030.66000.061*
C260.6723 (4)0.9514 (3)0.7101 (3)0.0718 (14)
H26A0.69620.99010.66080.108*
H26B0.72610.95540.75590.108*
H26C0.60350.97660.73100.108*
C270.7102 (3)0.7392 (3)0.8084 (3)0.0583 (12)
H27A0.68560.73920.86890.070*
H27B0.77320.78320.80460.070*
C280.7463 (5)0.6358 (4)0.7846 (4)0.0892 (18)
H28A0.80380.61510.82360.134*
H28B0.77290.63530.72540.134*
H28C0.68520.59120.78980.134*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0632 (6)0.0381 (4)0.0456 (5)−0.0033 (5)0.0015 (5)−0.0066 (5)
O10.0407 (14)0.0447 (13)0.0439 (14)−0.0044 (12)0.0025 (11)0.0169 (12)
C10.046 (2)0.0284 (16)0.0259 (16)−0.0059 (15)0.0015 (15)0.0010 (15)
N10.057 (2)0.0428 (17)0.063 (2)0.0025 (16)0.0204 (17)0.0246 (17)
S20.1242 (12)0.0529 (7)0.1369 (14)0.0229 (8)0.0171 (11)−0.0257 (9)
N20.0458 (18)0.0498 (17)0.0383 (17)−0.0028 (15)0.0085 (15)0.0050 (16)
C20.0407 (19)0.0335 (17)0.0340 (18)−0.0021 (16)−0.0017 (16)−0.0037 (16)
C30.049 (2)0.0358 (17)0.0268 (17)−0.0095 (17)0.0015 (16)−0.0082 (16)
C40.056 (2)0.0413 (19)0.0312 (18)−0.0123 (18)0.0071 (18)0.0065 (17)
C50.053 (2)0.0319 (17)0.0388 (19)0.0003 (17)0.0007 (18)0.0068 (16)
C60.047 (2)0.0271 (16)0.0353 (18)−0.0023 (16)0.0032 (17)0.0005 (16)
C70.046 (2)0.0283 (16)0.0379 (18)−0.0010 (16)0.0036 (17)−0.0013 (15)
C80.043 (2)0.0284 (16)0.0344 (18)−0.0011 (15)0.0058 (16)−0.0031 (15)
C90.044 (2)0.0348 (17)0.045 (2)0.0057 (16)0.0086 (18)0.0004 (18)
C100.041 (2)0.0391 (18)0.048 (2)−0.0040 (18)0.0164 (17)−0.0032 (18)
C110.050 (2)0.0271 (15)0.0372 (18)0.0009 (15)0.0169 (18)0.0004 (16)
C120.048 (2)0.0334 (17)0.038 (2)0.0064 (16)0.0075 (17)0.0059 (16)
C130.0380 (19)0.0349 (17)0.0327 (18)−0.0006 (14)0.0064 (17)0.0017 (17)
C140.042 (2)0.0397 (18)0.043 (2)−0.0059 (17)0.0066 (17)0.0117 (18)
C150.046 (2)0.046 (2)0.039 (2)−0.0100 (18)0.0040 (18)−0.0020 (19)
C160.064 (3)0.104 (4)0.050 (3)−0.019 (3)−0.008 (2)0.003 (3)
C170.049 (3)0.111 (4)0.059 (3)−0.007 (3)−0.008 (2)0.031 (3)
C180.062 (3)0.056 (3)0.098 (4)0.007 (2)0.001 (3)0.026 (3)
C190.049 (2)0.0363 (19)0.056 (2)−0.0017 (17)0.007 (2)0.0137 (19)
C200.057 (3)0.047 (2)0.079 (3)−0.003 (2)0.016 (2)0.007 (2)
C210.067 (3)0.043 (2)0.050 (2)−0.009 (2)0.025 (2)0.0089 (19)
C220.080 (3)0.059 (3)0.086 (3)−0.016 (2)0.013 (3)−0.004 (3)
C230.090 (3)0.047 (2)0.050 (2)−0.012 (2)0.022 (2)0.015 (2)
C240.120 (5)0.078 (3)0.070 (3)0.004 (3)0.013 (3)−0.008 (3)
C250.058 (2)0.056 (2)0.037 (2)−0.001 (2)0.0161 (19)0.0001 (19)
C260.073 (3)0.057 (2)0.086 (3)−0.014 (2)0.030 (3)0.005 (3)
C270.053 (3)0.071 (3)0.051 (2)−0.014 (2)0.012 (2)0.004 (2)
C280.088 (4)0.099 (4)0.081 (4)0.027 (3)−0.011 (3)−0.008 (3)

Geometric parameters (Å, °)

S1—C201.732 (5)C15—C161.395 (6)
S1—C71.911 (3)C15—H150.9300
O1—C11.383 (4)C16—C171.408 (7)
O1—C131.396 (4)C16—H160.9300
C1—C21.379 (5)C17—C181.329 (7)
C1—C61.388 (5)C17—H170.9300
N1—C111.378 (4)C18—C191.415 (6)
N1—C211.452 (5)C18—H180.9300
N1—C231.476 (6)C19—C201.442 (6)
S2—C201.639 (4)C21—C221.513 (6)
N2—C31.380 (5)C21—H21A0.9700
N2—C251.461 (5)C21—H21B0.9700
N2—C271.465 (5)C22—H22A0.9600
C2—C31.397 (5)C22—H22B0.9600
C2—H20.9300C22—H22C0.9600
C3—C41.401 (5)C23—C241.448 (6)
C4—C51.381 (5)C23—H23A0.9700
C4—H40.9300C23—H23B0.9700
C5—C61.395 (5)C24—H24A0.9600
C5—H50.9300C24—H24B0.9600
C6—C71.510 (5)C24—H24C0.9600
C7—C81.493 (4)C25—C261.506 (6)
C7—C141.499 (5)C25—H25A0.9700
C8—C131.383 (5)C25—H25B0.9700
C8—C91.395 (5)C26—H26A0.9600
C9—C101.360 (5)C26—H26B0.9600
C9—H90.9300C26—H26C0.9600
C10—C111.403 (5)C27—C281.503 (6)
C10—H100.9300C27—H27A0.9700
C11—C121.409 (5)C27—H27B0.9700
C12—C131.376 (5)C28—H28A0.9600
C12—H120.9300C28—H28B0.9600
C14—C151.355 (5)C28—H28C0.9600
C14—C191.384 (5)
C20—S1—C795.16 (19)C18—C17—H17120.5
C1—O1—C13117.2 (3)C16—C17—H17120.5
C2—C1—O1115.2 (3)C17—C18—C19120.9 (4)
C2—C1—C6123.5 (3)C17—C18—H18119.5
O1—C1—C6121.3 (3)C19—C18—H18119.5
C11—N1—C21120.7 (3)C14—C19—C18119.4 (4)
C11—N1—C23121.4 (3)C14—C19—C20115.3 (4)
C21—N1—C23117.9 (3)C18—C19—C20125.3 (4)
C3—N2—C25120.7 (3)C19—C20—S2127.6 (4)
C3—N2—C27121.6 (3)C19—C20—S1110.0 (3)
C25—N2—C27115.1 (3)S2—C20—S1122.4 (3)
C1—C2—C3120.7 (3)N1—C21—C22115.4 (4)
C1—C2—H2119.7N1—C21—H21A108.4
C3—C2—H2119.7C22—C21—H21A108.4
N2—C3—C2121.4 (3)N1—C21—H21B108.4
N2—C3—C4122.0 (3)C22—C21—H21B108.4
C2—C3—C4116.6 (3)H21A—C21—H21B107.5
C5—C4—C3121.5 (3)C21—C22—H22A109.5
C5—C4—H4119.2C21—C22—H22B109.5
C3—C4—H4119.2H22A—C22—H22B109.5
C4—C5—C6122.2 (3)C21—C22—H22C109.5
C4—C5—H5118.9H22A—C22—H22C109.5
C6—C5—H5118.9H22B—C22—H22C109.5
C1—C6—C5115.5 (3)C24—C23—N1112.8 (4)
C1—C6—C7121.2 (3)C24—C23—H23A109.0
C5—C6—C7123.3 (3)N1—C23—H23A109.0
C8—C7—C14115.3 (3)C24—C23—H23B109.0
C8—C7—C6109.8 (3)N1—C23—H23B109.0
C14—C7—C6112.7 (3)H23A—C23—H23B107.8
C8—C7—S1108.3 (2)C23—C24—H24A109.5
C14—C7—S1101.8 (2)C23—C24—H24B109.5
C6—C7—S1108.4 (2)H24A—C24—H24B109.5
C13—C8—C9115.7 (3)C23—C24—H24C109.5
C13—C8—C7120.7 (3)H24A—C24—H24C109.5
C9—C8—C7123.4 (3)H24B—C24—H24C109.5
C10—C9—C8123.0 (3)N2—C25—C26113.5 (3)
C10—C9—H9118.5N2—C25—H25A108.9
C8—C9—H9118.5C26—C25—H25A108.9
C9—C10—C11120.9 (3)N2—C25—H25B108.9
C9—C10—H10119.6C26—C25—H25B108.9
C11—C10—H10119.6H25A—C25—H25B107.7
N1—C11—C10121.7 (3)C25—C26—H26A109.5
N1—C11—C12121.2 (3)C25—C26—H26B109.5
C10—C11—C12117.1 (3)H26A—C26—H26B109.5
C13—C12—C11120.1 (3)C25—C26—H26C109.5
C13—C12—H12120.0H26A—C26—H26C109.5
C11—C12—H12120.0H26B—C26—H26C109.5
C12—C13—C8123.2 (3)N2—C27—C28114.7 (4)
C12—C13—O1114.5 (3)N2—C27—H27A108.6
C8—C13—O1122.3 (3)C28—C27—H27A108.6
C15—C14—C19120.5 (4)N2—C27—H27B108.6
C15—C14—C7122.1 (3)C28—C27—H27B108.6
C19—C14—C7117.2 (3)H27A—C27—H27B107.6
C14—C15—C16119.3 (4)C27—C28—H28A109.5
C14—C15—H15120.4C27—C28—H28B109.5
C16—C15—H15120.4H28A—C28—H28B109.5
C15—C16—C17120.7 (4)C27—C28—H28C109.5
C15—C16—H16119.7H28A—C28—H28C109.5
C17—C16—H16119.7H28B—C28—H28C109.5
C18—C17—C16119.1 (5)
C13—O1—C1—C2−163.2 (3)C9—C10—C11—C12−1.5 (5)
C13—O1—C1—C618.4 (4)N1—C11—C12—C13−177.9 (3)
O1—C1—C2—C3−178.9 (3)C10—C11—C12—C131.3 (5)
C6—C1—C2—C3−0.5 (5)C11—C12—C13—C8−0.8 (5)
C25—N2—C3—C2179.5 (3)C11—C12—C13—O1178.0 (3)
C27—N2—C3—C2−19.7 (5)C9—C8—C13—C120.4 (5)
C25—N2—C3—C40.6 (5)C7—C8—C13—C12175.4 (3)
C27—N2—C3—C4161.4 (3)C9—C8—C13—O1−178.3 (3)
C1—C2—C3—N2178.0 (3)C7—C8—C13—O1−3.3 (5)
C1—C2—C3—C4−3.1 (5)C1—O1—C13—C12162.1 (3)
N2—C3—C4—C5−177.0 (3)C1—O1—C13—C8−19.1 (5)
C2—C3—C4—C54.1 (5)C8—C7—C14—C15−63.5 (4)
C3—C4—C5—C6−1.5 (5)C6—C7—C14—C1563.7 (4)
C2—C1—C6—C53.1 (5)S1—C7—C14—C15179.5 (3)
O1—C1—C6—C5−178.7 (3)C8—C7—C14—C19120.4 (4)
C2—C1—C6—C7−173.9 (3)C6—C7—C14—C19−112.4 (4)
O1—C1—C6—C74.3 (5)S1—C7—C14—C193.5 (4)
C4—C5—C6—C1−2.0 (5)C19—C14—C15—C162.7 (6)
C4—C5—C6—C7174.9 (3)C7—C14—C15—C16−173.2 (4)
C1—C6—C7—C8−24.2 (4)C14—C15—C16—C170.4 (6)
C5—C6—C7—C8159.0 (3)C15—C16—C17—C18−3.3 (7)
C1—C6—C7—C14−154.2 (3)C16—C17—C18—C193.2 (7)
C5—C6—C7—C1429.0 (4)C15—C14—C19—C18−2.9 (6)
C1—C6—C7—S193.9 (3)C7—C14—C19—C18173.2 (4)
C5—C6—C7—S1−82.9 (4)C15—C14—C19—C20176.8 (3)
C20—S1—C7—C8−121.4 (3)C7—C14—C19—C20−7.0 (5)
C20—S1—C7—C140.6 (3)C17—C18—C19—C14−0.1 (7)
C20—S1—C7—C6119.6 (3)C17—C18—C19—C20−179.8 (4)
C14—C7—C8—C13152.1 (3)C14—C19—C20—S2−173.9 (3)
C6—C7—C8—C1323.5 (4)C18—C19—C20—S25.8 (6)
S1—C7—C8—C13−94.6 (3)C14—C19—C20—S17.0 (5)
C14—C7—C8—C9−33.2 (5)C18—C19—C20—S1−173.3 (4)
C6—C7—C8—C9−161.8 (3)C7—S1—C20—C19−4.1 (3)
S1—C7—C8—C980.0 (4)C7—S1—C20—S2176.8 (3)
C13—C8—C9—C10−0.5 (5)C11—N1—C21—C2279.6 (5)
C7—C8—C9—C10−175.4 (3)C23—N1—C21—C22−100.7 (4)
C8—C9—C10—C111.1 (5)C11—N1—C23—C24−83.3 (5)
C21—N1—C11—C10−1.7 (5)C21—N1—C23—C2497.0 (5)
C23—N1—C11—C10178.6 (3)C3—N2—C25—C2676.0 (5)
C21—N1—C11—C12177.5 (4)C27—N2—C25—C26−85.9 (4)
C23—N1—C11—C12−2.2 (5)C3—N2—C27—C28100.4 (4)
C9—C10—C11—N1177.8 (3)C25—N2—C27—C28−97.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C17—H17···Cgi0.933.143.961 (5)149

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2093).

References

  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Z. N., Liu, F. Q., Chen, Y., Tam, P. K. H. & Yang, D. (2008). Org. Lett.10, 2171–2174. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography