PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2172.
Published online 2008 October 22. doi:  10.1107/S1600536808033801
PMCID: PMC2959523

4-Benzyl­pyridinium hydrogen selenate

Abstract

The structure of the title salt, C12H12N+·HSeO4 , consists of infinite parallel two-dimensional planes built of 4-benzyl­pyridinium and hydrogen selenate ions that are mutually connected by strong O—H(...)O and N—H(...)O hydrogen bonds. There are no contacts other than normal van der Waals inter­actions between the layers.

Related literature

For general background, see Fleck (2006 [triangle]); Baran et al. (2000 [triangle]). For related compounds, see: Ben Hamada & Jouini (2006 [triangle]); Kaabi et al. (2004 [triangle]); Ben Djemaa et al. (2007 [triangle]); Gowda et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2172-scheme1.jpg

Experimental

Crystal data

  • C12H12N+·HSeO4
  • M r = 314.19
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2172-efi1.jpg
  • a = 27.449 (5) Å
  • b = 10.821 (6) Å
  • c = 8.830 (1) Å
  • V = 2623 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.87 mm−1
  • T = 289 (2) K
  • 0.11 × 0.09 × 0.04 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.743, T max = 0.894
  • 3179 measured reflections
  • 2817 independent reflections
  • 1486 reflections with I > 2σ(I)
  • R int = 0.045
  • 2 standard reflections frequency: 120 min intensity decay: 11%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.087
  • S = 0.98
  • 2817 reflections
  • 207 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033801/im2065sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033801/im2065Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound C6H5CH2C5H4NH+ HSeO4- crystallizes in the orthorhombic space group Pbca. Correspondingly, there are eight formula units per unit cell. The crystal is built up of monohydrogenselenate anions connected by hydrogen bonds of the O—H···O type forming infinite chains [HSeO4]nn- perpendicular to the [001] directions.

These chains are themselves interconnected by means of N—H···O hydrogen bonds originating from the [C6H5CH2C5H4NH]+ cation, so as to build a three-dimensional network. The distances Se—O in the [HSeO4]- anions range from 1.608 (3) to 1.705 (3) Å (Fig. 1). These values are comparable to reported data (Fleck, 2006). The longest Se—O(2) distance of 1.705 (3) Å, is due to the presence of the acidic hydrogen atom on the SeO4 tetrahedron (Baran et al., 2000).

The organic groups are located in the (011) planes at x = 1/4 and x = 3/4. The average values of the C—C, C—N and C═C bond lengths of 1.5165 (6) Å, 1.3305 (6) Å and 1.3753 (6) Å in the [C6H5CH2C5H4NH]+ cation are similar to those observed in related compounds (Ben Hamada & Jouini, 2006; Kaabi et al., 2004; Ben Djemaa et al., 2007; Gowda et al., 2007). The C—C perpendicular interplanar distances range from 1.74 to 4.83 Å and the dihedral angle between two planes of rings is 67.04°, indicating the existence of strong van der Waals interactions by contacts between [C6H5CH2C5H4NH]+ cations.

All the hydrogen bonds (D—H···O, Table 1) and the van der Waals contacts give rise to a three dimensional network in the crystal structure.

Experimental

Crystals of the title compound C6H5CH2C5H4NH+ HSeO4- were prepared by slowly adding, at room temperature, an equimolecular proportion of H2SeO4 (1.9 cm3) to a solution of 4-benzyl pyridine (5 cm3). A crystalline precipitate was formed. After dissolving the precipitate by adding H2O, the solution is allowed to slowly evaporate at room temperature for several days until the formation of pink prismatic crystals with dimensions suitable for a crystallographic study occurs.

Refinement

Hydrogen atoms at C6, C9 and O3 were positioned geometrically, with C—H = 0.93 Å and O—H = 0.82 Å, and were refined with Uiso(H) = 1.41Ueq of the corresponding parent atom. The other H atoms bound to C (cyclic and CH2) groups, and N atoms were located from the difference Fourier map, and refined with distance restraints of [C—H = 0.90 (4)–1.00 (5) Å and Uiso(H) = 0.06 (1)–0.10 (2) Å2, (cyclic groups)], [C—H = 0.88 (6)–1.00 (4) Å and Uiso(H) = 0.06 (1)–0.12 (2) Å2, (CH2 group)], and N—H = 0.95 (4) Å with Uiso(H) = 1.14Ueq(N) for NH bond.

Figures

Fig. 1.
ORTEP drawing of [C6H5CH2C5H4NH]+ [HSeO4]-.
Fig. 2.
Projection along the b axis of the crystal structure of [C6H5CH2C5H4NH]+ [HSeO4]-.

Crystal data

C12H12N+·HSeO4F(000) = 1264
Mr = 314.19Dx = 1.592 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 27.449 (5) Åθ = 14–16°
b = 10.821 (6) ŵ = 2.87 mm1
c = 8.830 (1) ÅT = 289 K
V = 2623 (2) Å3Prism, pink
Z = 80.11 × 0.09 × 0.04 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1486 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
graphiteθmax = 27.0°, θmin = 2.4°
Non–profiled ω/2θ scansh = 0→35
Absorption correction: ψ scan (North et al., 1968)k = 0→13
Tmin = 0.743, Tmax = 0.894l = −2→11
3179 measured reflections2 standard reflections every 120 min
2817 independent reflections intensity decay: 11%

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0299P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max = 0.001
wR(F2) = 0.087Δρmax = 0.28 e Å3
S = 0.98Δρmin = −0.30 e Å3
2817 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 parametersExtinction coefficient: 0.0065 (3)
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Se0.568598 (14)0.68653 (3)0.34450 (4)0.04502 (15)
O10.53870 (10)0.8139 (2)0.3574 (4)0.0652 (8)
O20.53625 (10)0.5754 (2)0.2732 (4)0.0685 (9)
O30.61665 (10)0.7080 (3)0.2250 (4)0.0779 (10)
HO30.60650.72810.14110.11 (2)*
O40.59571 (11)0.6441 (3)0.4996 (3)0.0644 (8)
C10.22067 (18)0.5917 (5)0.6315 (6)0.0675 (14)
C20.21967 (19)0.6932 (5)0.5412 (7)0.0746 (15)
C30.25920 (19)0.7237 (5)0.4540 (6)0.0624 (13)
C40.30049 (14)0.6492 (4)0.4530 (4)0.0460 (10)
C50.30108 (17)0.5471 (4)0.5468 (6)0.0564 (12)
C60.26129 (17)0.5184 (4)0.6359 (6)0.0681 (14)
HC60.26210.44940.69880.061 (13)*
C70.3437 (2)0.6798 (6)0.3529 (6)0.0683 (14)
C80.38461 (14)0.7417 (4)0.4400 (4)0.0462 (10)
C90.38853 (17)0.8693 (4)0.4482 (5)0.0538 (11)
HC90.36620.91930.39770.046 (11)*
C100.42554 (19)0.9215 (5)0.5313 (6)0.0630 (13)
C110.45454 (18)0.7264 (5)0.5991 (6)0.0631 (13)
C120.41870 (17)0.6719 (5)0.5168 (6)0.0580 (12)
N0.45683 (14)0.8484 (4)0.6053 (5)0.0621 (11)
HC10.1926 (15)0.573 (4)0.690 (5)0.077 (15)*
HC20.1914 (18)0.742 (5)0.540 (6)0.102 (18)*
HC30.2621 (16)0.795 (4)0.388 (5)0.082 (16)*
HC50.3276 (13)0.498 (4)0.547 (4)0.058 (13)*
H1C70.334 (2)0.729 (6)0.280 (7)0.12 (2)*
H2C70.3573 (13)0.602 (4)0.309 (4)0.062 (14)*
HC100.4295 (16)1.006 (4)0.543 (5)0.090 (17)*
HC110.4786 (18)0.680 (4)0.661 (6)0.104 (19)*
HC120.4167 (16)0.587 (5)0.503 (5)0.087 (16)*
HN0.4820 (15)0.885 (4)0.664 (5)0.071 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Se0.0483 (2)0.0418 (2)0.0450 (2)0.00559 (19)0.0005 (2)−0.0042 (2)
O10.0665 (18)0.0466 (16)0.082 (2)0.0135 (15)−0.0004 (18)−0.0093 (17)
O20.0725 (19)0.0479 (17)0.085 (2)0.0001 (16)−0.0203 (18)−0.0108 (17)
O30.0505 (17)0.120 (3)0.063 (2)0.0120 (19)0.0084 (16)0.027 (2)
O40.093 (2)0.0568 (17)0.0429 (16)0.0089 (17)−0.0115 (16)−0.0017 (15)
C10.057 (3)0.070 (3)0.075 (4)−0.022 (3)0.012 (3)−0.016 (3)
C20.054 (3)0.075 (4)0.095 (4)0.005 (3)−0.007 (3)−0.004 (4)
C30.075 (3)0.055 (3)0.057 (3)−0.002 (3)−0.013 (3)0.008 (2)
C40.053 (3)0.048 (2)0.037 (2)−0.019 (2)0.001 (2)−0.0074 (19)
C50.055 (3)0.046 (3)0.068 (3)−0.001 (2)0.007 (3)0.001 (2)
C60.084 (4)0.045 (3)0.076 (4)−0.013 (2)0.016 (3)0.013 (3)
C70.077 (3)0.081 (4)0.047 (3)−0.028 (3)0.010 (3)−0.014 (3)
C80.053 (2)0.050 (2)0.036 (2)−0.012 (2)0.011 (2)0.002 (2)
C90.060 (3)0.051 (2)0.050 (3)−0.001 (2)0.002 (2)0.014 (2)
C100.072 (3)0.051 (3)0.066 (3)−0.016 (3)0.014 (3)−0.006 (3)
C110.055 (3)0.064 (3)0.071 (3)−0.006 (3)0.008 (3)0.020 (3)
C120.062 (3)0.047 (3)0.066 (3)−0.009 (2)0.011 (2)0.005 (3)
N0.045 (2)0.082 (3)0.059 (3)−0.025 (2)0.0041 (19)0.000 (2)

Geometric parameters (Å, °)

Se—O11.608 (3)C6—HC60.93
Se—O21.622 (3)C7—C81.518 (6)
Se—O41.625 (3)C7—H1C70.88 (6)
Se—O31.705 (3)C7—H2C71.00 (4)
O3—HO30.82C8—C121.381 (6)
C1—C21.358 (7)C8—C91.387 (6)
C1—C61.369 (7)C9—C101.375 (6)
C1—HC10.95 (4)C9—HC90.93
C2—C31.371 (7)C10—N1.338 (6)
C2—HC20.94 (5)C10—HC100.93 (5)
C3—C41.391 (6)C11—N1.323 (6)
C3—HC30.97 (4)C11—C121.358 (7)
C4—C51.381 (6)C11—HC111.00 (5)
C4—C71.515 (6)C12—HC120.93 (5)
C5—C61.382 (6)N—HN0.95 (4)
C5—HC50.90 (4)
O1—Se—O2112.56 (15)C4—C7—C8112.4 (4)
O1—Se—O4114.59 (15)C4—C7—H1C7109 (4)
O2—Se—O4111.61 (15)C8—C7—H1C7109 (4)
O1—Se—O3108.78 (16)C4—C7—H2C7109 (2)
O2—Se—O3106.51 (16)C8—C7—H2C7107 (2)
O4—Se—O3101.89 (16)H1C7—C7—H2C7110 (5)
Se—O3—HO3109.5C12—C8—C9117.8 (4)
C2—C1—C6120.1 (5)C12—C8—C7120.6 (4)
C2—C1—HC1118 (3)C9—C8—C7121.5 (5)
C6—C1—HC1122 (3)C10—C9—C8119.6 (4)
C1—C2—C3120.6 (5)C10—C9—HC9120.2
C1—C2—HC2119 (3)C8—C9—HC9120.2
C3—C2—HC2121 (3)N—C10—C9119.5 (4)
C2—C3—C4120.6 (5)N—C10—HC10117 (3)
C2—C3—HC3126 (3)C9—C10—HC10123 (3)
C4—C3—HC3113 (3)N—C11—C12119.3 (5)
C5—C4—C3118.0 (4)N—C11—HC11117 (3)
C5—C4—C7121.0 (4)C12—C11—HC11124 (3)
C3—C4—C7121.0 (5)C11—C12—C8121.1 (5)
C4—C5—C6120.8 (4)C11—C12—HC12123 (3)
C4—C5—HC5119 (3)C8—C12—HC12116 (3)
C6—C5—HC5121 (3)C11—N—C10122.6 (5)
C1—C6—C5119.8 (5)C11—N—HN118 (3)
C1—C6—HC6120.1C10—N—HN119 (3)
C5—C6—HC6120.1
C6—C1—C2—C3−0.2 (8)C4—C7—C8—C1285.0 (6)
C1—C2—C3—C42.0 (8)C4—C7—C8—C9−93.6 (6)
C2—C3—C4—C5−2.6 (7)C12—C8—C9—C10−0.1 (6)
C2—C3—C4—C7177.9 (4)C7—C8—C9—C10178.5 (4)
C3—C4—C5—C61.6 (7)C8—C9—C10—N−1.1 (6)
C7—C4—C5—C6−178.9 (4)N—C11—C12—C8−0.2 (7)
C2—C1—C6—C5−0.8 (8)C9—C8—C12—C110.8 (6)
C4—C5—C6—C10.0 (7)C7—C8—C12—C11−177.8 (4)
C5—C4—C7—C8−78.7 (6)C12—C11—N—C10−1.1 (7)
C3—C4—C7—C8100.8 (6)C9—C10—N—C111.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—HO3···O4i0.821.892.617 (4)148
N—HN···O2ii0.95 (4)1.82 (5)2.762 (5)168 (4)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2065).

References

  • Baran, J., Śledź, M., Drozd, M., Pietraszko, A., Haznar, A. & Ratajczak, H. (2000). J. Mol. Struct.526, 361–371.
  • Ben Djemaa, I., Elaoud, Z., Mhiri, T., Abdelhedi, R. & Savariault, J. M. (2007). Solid State Commun.142, 610–615.
  • Ben Hamada, L. & Jouini, A. (2006). Mater. Res. Bull.41, 1917–1924.
  • Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fleck, M. (2006). Acta Cryst. E62, o4939–o4941.
  • Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kaabi, K., Ben Nasr, C. & Rzaigui, M. (2004). J. Phys. Chem. Solids, 65, 1759–1764.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography