PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1468.
Published online 2008 October 31. doi:  10.1107/S1600536808034600
PMCID: PMC2959519

Dichlorido[2,2′-(oxydimethyl­ene)dipyridine]zinc(II)

Abstract

In the title complex, [ZnCl2(C12H12N2O)], the ZnII atom is coordinated in a distorted trigonal-bipyramidal geometry by two Cl atoms, and one O atom and two N atoms from the 2,2′-(oxydimethyl­ene)dipyridine ligand. In the complex, the two pyridine rings make a dihedral angle of 15.44 (14)°. There is a weak inter­molecular π–π stacking inter­action between pyridine rings; the centroid–centroid distance is 3.8079 (17) Å.

Related literature

For the isotypic Cd and Cu analogs of the title compound, see: Li (2007 [triangle]) and Li (2008 [triangle]), respectively.

An external file that holds a picture, illustration, etc.
Object name is e-64-m1468-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C12H12N2O)]
  • M r = 336.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1468-efi1.jpg
  • a = 8.0874 (12) Å
  • b = 12.5013 (18) Å
  • c = 15.6210 (16) Å
  • β = 121.180 (11)°
  • V = 1351.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.20 mm−1
  • T = 298 (2) K
  • 0.40 × 0.32 × 0.13 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.466, T max = 0.751
  • 5529 measured reflections
  • 2388 independent reflections
  • 2158 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.069
  • S = 1.05
  • 2388 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034600/is2347sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034600/is2347Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2,2'-(oxydimethylene)dipyridine is an useful tridentate terminal ligand and the CdII complex with it as ligand has been published (Li, 2007). Herein the crystal structure of the title Zn complex, (I), with 2,2'-(oxydimethylene)dipyridine as ligand, is reported.

The molecular structure of (I) is shown in Fig. 1. In this mononuclear complex, atom Zn1 is in a distorted trigonal bipyramidal coordination environment (Table 1). In the crystal structure, there are a weak π-π stacking interaction between symmetry related pyridyl rings, with the relevant distances being Cg1···Cg1i = 3.8079 (17) Å and a perpendicular distance of 3.597 Å [symmetry code (i) 1-x, 2-y, -z; Cg1 is the centroid of the N1/C1—C5 ring]. The title compound is isostructural with the CdII complex (Li, 2007).

Experimental

A methanol solution (5 ml) of 2,2'-(oxydimethylene)dipyridine (0.0345 g, 0.172 mmol) was added into 8 ml H2O solution containing ZnCl2 (0.0241 g, 0.177 mmol). The mixed solution was stirred for a few minutes. The colorless single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement

All H atom were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of complex (I), showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level

Crystal data

[ZnCl2(C12H12N2O)]F(000) = 680
Mr = 336.51Dx = 1.654 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3915 reflections
a = 8.0874 (12) Åθ = 2.9–28.1°
b = 12.5013 (18) ŵ = 2.20 mm1
c = 15.6210 (16) ÅT = 298 K
β = 121.180 (11)°Block, colorless
V = 1351.2 (3) Å30.40 × 0.32 × 0.13 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer2388 independent reflections
Radiation source: fine-focus sealed tube2158 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→9
Tmin = 0.466, Tmax = 0.751k = −14→8
5529 measured reflectionsl = −17→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0373P)2 + 0.2883P] where P = (Fo2 + 2Fc2)/3
2388 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4107 (3)0.83139 (18)−0.04103 (18)0.0431 (5)
C20.2717 (3)0.9110 (2)−0.0806 (2)0.0609 (7)
H20.20770.9271−0.14850.073*
C30.4597 (4)0.8595 (2)0.1155 (2)0.0560 (6)
H30.52360.84170.18310.067*
C40.3238 (4)0.9395 (2)0.0809 (3)0.0687 (8)
H40.29640.97520.12430.082*
C50.2299 (4)0.9658 (2)−0.0178 (3)0.0698 (8)
H50.13841.0203−0.04250.084*
C60.4609 (3)0.7685 (2)−0.10595 (18)0.0503 (6)
H6A0.34580.7537−0.17020.060*
H6B0.55150.8079−0.11710.060*
C70.6087 (3)0.59950 (19)−0.09923 (16)0.0460 (5)
H7A0.68750.6357−0.12050.055*
H7B0.49900.5673−0.15750.055*
C80.7246 (3)0.51540 (18)−0.02358 (16)0.0397 (5)
C90.7807 (3)0.4226 (2)−0.05024 (19)0.0495 (6)
H90.74440.4107−0.11650.059*
C100.8902 (4)0.3486 (2)0.0219 (2)0.0537 (6)
H100.93050.28630.00540.064*
C110.9394 (3)0.36760 (19)0.1189 (2)0.0508 (6)
H111.01250.31820.16900.061*
C120.8788 (3)0.46096 (18)0.14068 (18)0.0456 (5)
H120.91230.47360.20640.055*
Cl10.71768 (8)0.63978 (5)0.25220 (4)0.04925 (16)
Cl20.98849 (8)0.77735 (5)0.14453 (5)0.05218 (16)
N10.5035 (3)0.80611 (14)0.05554 (14)0.0426 (4)
N20.7730 (2)0.53478 (14)0.07069 (13)0.0386 (4)
O10.5448 (3)0.67253 (13)−0.05431 (12)0.0539 (4)
Zn10.71979 (3)0.686250 (19)0.111610 (17)0.03705 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0374 (11)0.0391 (12)0.0482 (14)−0.0003 (9)0.0189 (10)0.0079 (10)
C20.0492 (14)0.0550 (15)0.0680 (17)0.0116 (12)0.0229 (13)0.0196 (14)
C30.0644 (15)0.0483 (14)0.0592 (16)0.0069 (12)0.0346 (13)−0.0003 (12)
C40.0747 (18)0.0504 (16)0.094 (2)0.0070 (14)0.0533 (18)−0.0080 (16)
C50.0595 (16)0.0487 (15)0.104 (2)0.0156 (13)0.0439 (17)0.0120 (16)
C60.0497 (13)0.0538 (14)0.0417 (13)0.0048 (11)0.0196 (10)0.0125 (11)
C70.0496 (12)0.0524 (14)0.0371 (12)−0.0020 (11)0.0232 (10)−0.0055 (11)
C80.0393 (11)0.0425 (12)0.0393 (12)−0.0079 (9)0.0217 (9)−0.0068 (10)
C90.0547 (13)0.0495 (14)0.0519 (14)−0.0101 (11)0.0329 (12)−0.0153 (12)
C100.0568 (14)0.0395 (12)0.0784 (19)−0.0017 (11)0.0444 (14)−0.0067 (13)
C110.0491 (13)0.0425 (13)0.0603 (16)0.0047 (10)0.0281 (12)0.0069 (11)
C120.0471 (12)0.0437 (13)0.0430 (13)0.0021 (10)0.0213 (10)0.0012 (10)
Cl10.0624 (3)0.0501 (3)0.0403 (3)−0.0039 (3)0.0301 (3)0.0019 (3)
Cl20.0507 (3)0.0541 (3)0.0561 (4)−0.0081 (3)0.0307 (3)−0.0034 (3)
N10.0420 (10)0.0387 (10)0.0445 (11)0.0025 (8)0.0206 (9)0.0011 (8)
N20.0419 (9)0.0362 (9)0.0380 (10)−0.0004 (7)0.0208 (8)−0.0025 (8)
O10.0673 (10)0.0512 (10)0.0332 (9)0.0166 (8)0.0190 (8)0.0023 (7)
Zn10.04082 (16)0.03641 (17)0.03043 (17)0.00126 (10)0.01599 (12)−0.00073 (10)

Geometric parameters (Å, °)

C1—N11.329 (3)C7—H7B0.9700
C1—C21.384 (3)C8—N21.336 (3)
C1—C61.496 (3)C8—C91.386 (3)
C2—C51.375 (4)C9—C101.370 (4)
C2—H20.9300C9—H90.9300
C3—N11.339 (3)C10—C111.373 (4)
C3—C41.373 (4)C10—H100.9300
C3—H30.9300C11—C121.375 (3)
C4—C51.360 (4)C11—H110.9300
C4—H40.9300C12—N21.346 (3)
C5—H50.9300C12—H120.9300
C6—O11.409 (3)Cl1—Zn12.2803 (6)
C6—H6A0.9700Cl2—Zn12.2642 (7)
C6—H6B0.9700N1—Zn12.1178 (18)
C7—O11.403 (3)N2—Zn12.1128 (18)
C7—C81.494 (3)O1—Zn12.2252 (16)
C7—H7A0.9700
N1—C1—C2121.9 (2)C10—C9—H9120.3
N1—C1—C6116.90 (19)C8—C9—H9120.3
C2—C1—C6121.2 (2)C9—C10—C11119.0 (2)
C5—C2—C1118.8 (3)C9—C10—H10120.5
C5—C2—H2120.6C11—C10—H10120.5
C1—C2—H2120.6C10—C11—C12118.9 (2)
N1—C3—C4122.4 (3)C10—C11—H11120.5
N1—C3—H3118.8C12—C11—H11120.5
C4—C3—H3118.8N2—C12—C11122.6 (2)
C5—C4—C3119.1 (3)N2—C12—H12118.7
C5—C4—H4120.5C11—C12—H12118.7
C3—C4—H4120.5C1—N1—C3118.5 (2)
C4—C5—C2119.3 (2)C1—N1—Zn1119.86 (15)
C4—C5—H5120.4C3—N1—Zn1121.64 (17)
C2—C5—H5120.4C8—N2—C12118.13 (19)
O1—C6—C1106.18 (18)C8—N2—Zn1120.46 (14)
O1—C6—H6A110.5C12—N2—Zn1120.81 (15)
C1—C6—H6A110.5C7—O1—C6117.43 (18)
O1—C6—H6B110.5C7—O1—Zn1117.11 (13)
C1—C6—H6B110.5C6—O1—Zn1115.38 (14)
H6A—C6—H6B108.7N2—Zn1—N1139.71 (7)
O1—C7—C8107.76 (17)N2—Zn1—O171.63 (6)
O1—C7—H7A110.2N1—Zn1—O171.44 (7)
C8—C7—H7A110.2N2—Zn1—Cl2101.41 (5)
O1—C7—H7B110.2N1—Zn1—Cl2103.18 (5)
C8—C7—H7B110.2O1—Zn1—Cl2105.09 (5)
H7A—C7—H7B108.5N2—Zn1—Cl199.63 (5)
N2—C8—C9121.9 (2)N1—Zn1—Cl199.33 (6)
N2—C8—C7116.73 (19)O1—Zn1—Cl1141.69 (5)
C9—C8—C7121.4 (2)Cl2—Zn1—Cl1113.22 (3)
C10—C9—C8119.4 (2)
N1—C1—C2—C50.5 (4)C8—C7—O1—Zn125.3 (2)
C6—C1—C2—C5179.5 (2)C1—C6—O1—C7−178.79 (18)
N1—C3—C4—C50.0 (4)C1—C6—O1—Zn1−34.2 (2)
C3—C4—C5—C20.7 (4)C8—N2—Zn1—N140.8 (2)
C1—C2—C5—C4−0.9 (4)C12—N2—Zn1—N1−148.24 (15)
N1—C1—C6—O120.9 (3)C8—N2—Zn1—O116.36 (15)
C2—C1—C6—O1−158.1 (2)C12—N2—Zn1—O1−172.68 (17)
O1—C7—C8—N2−11.5 (3)C8—N2—Zn1—Cl2−85.92 (15)
O1—C7—C8—C9169.19 (19)C12—N2—Zn1—Cl285.04 (16)
N2—C8—C9—C10−0.5 (3)C8—N2—Zn1—Cl1157.83 (14)
C7—C8—C9—C10178.7 (2)C12—N2—Zn1—Cl1−31.21 (16)
C8—C9—C10—C110.9 (3)C1—N1—Zn1—N2−40.5 (2)
C9—C10—C11—C12−0.6 (3)C3—N1—Zn1—N2140.93 (17)
C10—C11—C12—N2−0.1 (4)C1—N1—Zn1—O1−16.06 (16)
C2—C1—N1—C30.2 (3)C3—N1—Zn1—O1165.40 (19)
C6—C1—N1—C3−178.8 (2)C1—N1—Zn1—Cl285.67 (16)
C2—C1—N1—Zn1−178.39 (17)C3—N1—Zn1—Cl2−92.87 (18)
C6—C1—N1—Zn12.6 (3)C1—N1—Zn1—Cl1−157.66 (16)
C4—C3—N1—C1−0.5 (4)C3—N1—Zn1—Cl123.80 (18)
C4—C3—N1—Zn1178.1 (2)C7—O1—Zn1—N2−23.24 (15)
C9—C8—N2—C12−0.2 (3)C6—O1—Zn1—N2−167.91 (17)
C7—C8—N2—C12−179.44 (19)C7—O1—Zn1—N1173.15 (17)
C9—C8—N2—Zn1171.03 (15)C6—O1—Zn1—N128.48 (15)
C7—C8—N2—Zn1−8.2 (2)C7—O1—Zn1—Cl274.03 (16)
C11—C12—N2—C80.5 (3)C6—O1—Zn1—Cl2−70.65 (16)
C11—C12—N2—Zn1−170.71 (17)C7—O1—Zn1—Cl1−105.42 (16)
C8—C7—O1—C6169.28 (19)C6—O1—Zn1—Cl1109.91 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2347).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J. M. (2007). Acta Cryst. E63, m2241. [PMC free article] [PubMed]
  • Li, J. M. (2008). Acta Cryst. E64, m1467 [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography